Interpretable Machine Learning

Shapley Values for Local Explanations

Actual prediction: 4514.35

Average prediction: 4508.18 Learnlng goals
@ See model predictions as a cooperative game

@ Transfer the Shapley value concept from
game theory to machine learning




FROM GAME THEORY TO MACHINE LEARNING
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FROM GAME THEORY TO MACHINE LEARNING

@ Game: Make prediction ?(x1 JXoy .., Xp) for a single observation x
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FROM GAME THEORY TO MACHINE LEARNING

@ Game: Make prediction ?(x1 , X2, . .., Xp) for a single observation x

@ Players: Features x;,j € {1,..., p} which cooperate to produce a prediction
~+ How can we make a prediction with a subset of features without changing the
model?
~+ PD function: s(xs) := [,
over —S)

s ?(xs, X_s)dPx_, (“removing” by marginalizing
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@ Game: Make prediction ?(x1 , X2, . .., Xp) for a single observation x

@ Players: Features x;,j € {1,..., p} which cooperate to produce a prediction
~+ How can we make a prediction with a subset of features without changing the
model?
~» PD function: ?s(xs) = fx,s ?(xs, X_s)dPx_, (“removing” by marginalizing
over —S)

@ Value function / payout of coalition S C P for observation x:
v(8) = Ts(xs) — Ex((x)), where fs : Xs — Y

~~ subtraction of Ey(7(x)) ensures that v is a value function with v(()) = 0

° e
E(f(x)) —— Fs(xs)
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FROM GAME THEORY TO MACHINE LEARNING

@ Game: Make prediction ?(x1 , X2, . .., Xp) for a single observation x

@ Players: Features x;,j € {1,..., p} which cooperate to produce a prediction
~+ How can we make a prediction with a subset of features without changing the
model?
~+ PD function: s(xs) := [,
over —S)

s ?(xs, X_s)dPx_, (“removing” by marginalizing

@ Value function / payout of coalition S C P for observation x:
v(8) = Ts(xs) — Ex((x)), where fs : Xs — Y

~~ subtraction of Ey(7(x)) ensures that v is a value function with v(()) = 0

[ ]
Z2

E(7(x) — fs(xs)

@ Marginal contribution: v(SU {j}) — v(S) = fsug;) (Xsugjy) — fs(Xs)
~ T (f(x)) cancels out due to the subtraction of value functions
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SHAPLEY VALUE - DEFINITION

Shapley value ¢; of feature j for observation x via order definition:

¢j(x) = |P|,Zfsm{,} Xsrugjy) — sy (Xs7)
Tel

marginal contribution of feature j

@ Interpretation: Feature x; contributed ¢; to difference between #(x) and average
prediction
~~ Note: Marginal contributions and Shapley values can be negative

@ For exact computation of ¢;(x), the PD function fs(xs) = 1 37, #(xs, "’ x) s) for
any set of features S can be used which yields

3 (M)
6j(x) = |p|| ZZ Xsru{ip X {s;u{/}})‘f(xsfﬂx—s;)
TGHI 1

~~ Note: ?s marginalizes over all other features —S using all observations
i=1,...,n
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ESTIMATION: A PRACTICAL PROBLEM

@ Exact Shapley value computation is problematic for high-dimensional feature

spaces
~- For 10 features, there are already |P|! = 10! & 3.6 million possible orders of

features
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we approximate it using a limited amount of M random samples of 7 to build
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ESTIMATION: A PRACTICAL PROBLEM

@ Exact Shapley value computation is problematic for high-dimensional feature
spaces
~- For 10 features, there are already |P|! = 10! & 3.6 million possible orders of
features

@ Additional problem due to estimation of the marginal prediction ?3;1 Averaging
over the entire data set for each coalition S/ introduced by 7 can be very
expensive for large data sets

@ Solution to both problems is sampling: Instead of averaging over |P|! - n terms,
we approximate it using a limited amount of M random samples of 7 to build
coalitions S}

@ M is a tradeoff between accuracy of the Shapley value and computational costs
~ The higher M, the closer to the exact Shapley values, but the more costly the
computation
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APPROXIMATION ALGORITHM

Estimation of ¢; for observation x of model f fitted on data D using sample size M: h‘
Q@ Form=1,...,Mdo:

%
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APPROXIMATION ALGORITHM

Estimation of ¢; for observation x of model f fitted on data D using sample size M:
Q@ Form=1,...,Mdo:
© Select random order / perm. of feature indices 7 = (7("),... 7(P) e N
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APPROXIMATION ALGORITHM

Estimation of ¢; for observation x of model f fitted on data D using sample size M:
Q@ Form=1,... Mdo:
© Select random order / perm. of feature indices 7 = (7("),... 7(P) e N
@ Determine coalition Sy, := S7, i.e., the set of feat. before feat. j in order 7
© Select random data point z(™ € D
@ Construct two artificial obs. by replacing feature values from x with z(™:

(m) _ (m) (m)
° X, = (me,...,xT(‘sm‘_U,xj,zTUSmH”,...,zT(p)) takes features

Xsmu{i}

Sm U {j} from x

(m)
Z_{smu{i}}
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APPROXIMATION ALGORITHM

Estimation of ¢; for observation x of model f fitted on data D using sample size M:
Q@ Form=1,... Mdo:
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@ Determine coalition Sy, := S7, i.e., the set of feat. before feat. j in order 7
© Select random data point z(™ € D
@ Construct two artificial obs. by replacing feature values from x with z(™:

(m) _ (m) (m)
° X, = (me,...,xT(‘sm‘_U,xj,zTUSmH”,...,zT(p)) takes features
Xsmu{j} z<m)
—{8mUti}}
Sm U {j} from x
(m) _ (m) _(m) (m)
0 XU = (Xp(), s Xpllsml=10, 2} 5 2 (5pian)s - - - 5 2, ) tEKES features
—_———
Xsp, m
2"
S, from x
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APPROXIMATION ALGORITHM

Estimation of ¢; for observation x of model f fitted on data D using sample size M:
Q@ Form=1,... Mdo:
© Select random order / perm. of feature indices 7 = (7("),... 7(P) e N
@ Determine coalition Sy, := S7, i.e., the set of feat. before feat. j in order 7
© Select random data point z(™ € D
@ Construct two artificial obs. by replacing feature values from x with z(™:

(m) _ (m) (m)
O X = (Xp()y ooy Xpllsml=1)s Xy Z(15pl4n)s - - - 5 Z,() ) tEKES fe@tUTrES
Xsmu{j} z<m)
—{SnU{iT}
Sm U {j} from x
(m) _ (m) _(m) (m)
0 XU = (Xp(), s Xpllsml=10, 2} 5 2 (5pian)s - - - 5 2, ) tEKES features
—_———
Xsm 2(m

.
S, from x
© Compute difference ¢f" = ?(x(;;?)) — ?(x(,"}-))
~ 15, (xs,) is approximated by F(x\") and s, (Xs,up3) by F(x{7)
over M iters.
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APPROXIMATION ALGORITHM

Estimation of ¢; for observation x of model f fitted on data D using sample size M:
Q@ Form=1,... Mdo:
© Select random order / perm. of feature indices 7 = (7("),... 7(P) e N
@ Determine coalition Sy, := S7, i.e., the set of feat. before feat. j in order 7
© Select random data point z(™ € D
@ Construct two artificial obs. by replacing feature values from x with z(™:

(m) _ (m) (m)
O X = (Xp()y ooy Xpllsml=1)s Xy Z(15pl4n)s - - - 5 Z,() ) tEKES fe@tUTrES
Xsmu{j} z(m)
~Tsmuti}}
Sm U {j} from x
(m) _ (m) _(m) (m)
0 XU = (Xp(), s Xpllsml=10, 2} 5 2 (5pian)s - - - 5 2, ) tEKES features
—_———
Xsm Z(m)

.
S, from x
© Compute difference ¢f" = ?(x(;;?)) — ?(x(,"}-))
~ 15, (xs,) is approximated by F(x\") and s, (Xs,up3) by F(x{7)
over M iters.

@ Compute Shapley value ¢; = & S-m_, ¢
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SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

[ b it " ] x with feature values in
X: obs. of interes
Definition Sy, (other are replaced)
1M
_ T m p; m
6(x) = 2 D7 [Txs™) = F(x—™)]
m=1
x with feature values in
SmU{j}
Temperature Humidity Windspeed Year
T 10.66 56 1 2012
Lty 10.66 56 2012
L—j 10.66 56 random : :(Windspred random : 2\,
%/—/
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SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

LContribution of feature j

Definition to coalition S,
1 M
()j(x) - M Z {f(xﬂ'(m)) - f(x_/(m))

m=1
= A(j, Sm)
e A(j,Sn) = ?(x(f;)) - ?(x(f})) is the marginal contribution of feature j to coalition
Sm
@ Here: Feature year contributes +700 bike rentals if it joins coalition
Sm = {temp, hum}

Temperature Humidity Windspeed Year Count
T 10.66 56 " 2012
Ty 10.66 56 random : 200, 2012 5600 200
T—j 10.66 56 random : Zyi i | random : 250, 4900
T " A(j; Sm)
J f marginal
contribution
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SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Lo average the contributions
Definition of feature j

1
:MZ
m

=1

@ Compute marginal contribution of feature j towards the prediction across all
randomly drawn feature coalitions Sy, ..., Sy

@ Average all M marginal contributions of feature j

@ Shapley value ¢; is the payout of feature j, i.e., how much feature year
contributed to the overall prediction in bicycle counts of a specific observation x

m= 1 2 M Shapley value
700 s3 ., 30 501
——
A (.7 ’ Sm ) ¢j
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REVISITED: AXIOMS FOR FAIR ATTRIBUTIONS

We take the general axioms for Shapley Values and apply it to predictions:

@ Efficiency: Shapley values add up to the (centered) prediction:
i1 6 = 1(x) — Ex((X))
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We take the general axioms for Shapley Values and apply it to predictions:

@ Efficiency: Shapley values add up to the (centered) prediction:
i1 6 = 1(x) — Ex((X))

@ Symmetry: Two features j and k that contribute the same to the prediction get
the same payout
~ interaction effects between features are fairly divided

?su{j}(xsu{j}) = ?su{k}(xsu{k}) forall S C P\ {j, k} then ¢j = ¢k
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We take the general axioms for Shapley Values and apply it to predictions:

@ Efficiency: Shapley values add up to the (centered) prediction:
i1 6 = 1(x) — Ex((X))

@ Symmetry: Two features j and k that contribute the same to the prediction get
the same payout
~ interaction effects between features are fairly divided

fsugy (Xsugi) = Tsugny (Xsugky) forall S € P\ {j, k} then ¢; = ¢k

@ Dummy / Null Player: Shapley value of a feature that does not influence the
prediction is zero ~~ if a feature was not selected by the model (e.g., tree or
LASSO), its Shapley value is zero
?SU{/'} (XSU{j}) = ?s(Xs) forall S C P then d),- =0
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REVISITED: AXIOMS FOR FAIR ATTRIBUTIONS

We take the general axioms for Shapley Values and apply it to predictions:

@ Efficiency: Shapley values add up to the (centered) prediction:
i1 6 = 1(x) — Ex((X))

@ Symmetry: Two features j and k that contribute the same to the prediction get
the same payout
~ interaction effects between features are fairly divided

fsugy (Xsugi) = Tsugny (Xsugky) forall S € P\ {j, k} then ¢; = ¢k

@ Dummy / Null Player: Shapley value of a feature that does not influence the
prediction is zero ~~ if a feature was not selected by the model (e.g., tree or
LASSO), its Shapley value is zero
?SU{/'} (XSU{j}) = ?s(Xs) forall S C P then d),- =0

@ Additivity: For a prediction with combined payouts, the payout is the sum of
payouts: ¢;(v1) + ¢j(v2) ~» Shapley values for model ensembles can be
combined
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BIKE SHARING DATASET

Actual prediction: 4434.86
Average prediction: 4507.67

season=SUMMER

I . ]
]
]
]
[ ]
[ ]
\

@ Shapley values of observation i = 200 from the bike sharing data

@ Difference between model prediction of this observation and the average
prediction of the data is fairly distributed among the features (i.e.,
4434 — 4507 ~ —73)

@ Feature value temp = 28.5 has the most positive effect, with a contribution
(increase of prediction) of about +400
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ADVANTAGES AND DISADVANTAGES

Advantages:
@ Solid theoretical foundation in game theory

@ Prediction is fairly distributed among the feature values ~ easy to interpret for
a user

@ Contrastive explanations that compare the prediction with the average
prediction

Disadvantages:

@ Without sampling, Shapley values need a lot of computing time to inspect all
possible coalitions

@ Like many other IML methods, Shapley values suffer from the inclusion of
unrealistic data observations when features are correlated
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