Shapley Values for Local Explanations

Interpretable Machine Learning

Learning goals

- See model predictions as a cooperative game
- **•** Transfer the Shapley value concept from game theory to machine learning

• Game: Make prediction $\hat{f}(x_1, x_2, \ldots, x_p)$ for a single observation **x**

- Game: Make prediction $\hat{f}(x_1, x_2, \ldots, x_p)$ for a single observation **x**
- Players: Features $x_j, j \in \{1, \ldots, p\}$ which cooperate to produce a prediction \rightarrow How can we make a prediction with a subset of features without changing the model?

⇝ PD function: ˆ*fS*(**x***S*) := R *X*−*^S* ˆ*f*(**x***S*, *^X*−*S*)*d*P*^X*−*^S* ("removing" by marginalizing over −*S*)

- Game: Make prediction $\hat{f}(x_1, x_2, \ldots, x_p)$ for a single observation **x**
- Players: Features $x_j, j \in \{1, \ldots, p\}$ which cooperate to produce a prediction \rightarrow How can we make a prediction with a subset of features without changing the model?

⇝ PD function: ˆ*fS*(**x***S*) := R *X*−*^S* ˆ*f*(**x***S*, *^X*−*S*)*d*P*^X*−*^S* ("removing" by marginalizing over −*S*)

Value function / payout of coalition *S* ⊆ *P* for observation **x**:

$$
v(S) = \hat{f}_S(\bm{x}_S) - \mathbb{E}_{\bm{x}}(\hat{f}(\bm{x})), \text{ where } \hat{f}_S: \mathcal{X}_S \mapsto \mathcal{Y}
$$

 \rightsquigarrow subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that *v* is a value function with $v(\emptyset) = 0$

$$
\begin{array}{c}\n \stackrel{x_1}{\longleftarrow} \\
\hline\n\mathbb{E}(\hat{f}(\mathbf{x})) \qquad \qquad \xrightarrow{x_2} \\
\stackrel{x_3}{\longleftarrow} \\
\hline\n \end{array} \qquad \qquad \hat{f}_S(\mathbf{x}_S)
$$

- Game: Make prediction $\hat{f}(x_1, x_2, \ldots, x_p)$ for a single observation **x**
- Players: Features $x_j, j \in \{1, \ldots, p\}$ which cooperate to produce a prediction \rightarrow How can we make a prediction with a subset of features without changing the model?

⇝ PD function: ˆ*fS*(**x***S*) := R *X*−*^S* ˆ*f*(**x***S*, *^X*−*S*)*d*P*^X*−*^S* ("removing" by marginalizing over −*S*)

Value function / payout of coalition *S* ⊆ *P* for observation **x**:

$$
v(S) = \hat{f}_S(\mathbf{x}_S) - \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x})), \text{ where } \hat{f}_S: \mathcal{X}_S \mapsto \mathcal{Y}
$$

 \rightsquigarrow subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that *v* is a value function with $v(\emptyset) = 0$

 \bullet Marginal contribution: *v*(*S* ∪ {*j*}) − *v*(*S*) = $\hat{f}_{S \cup \{i\}}(\mathbf{x}_{S \cup \{i\}}) - \hat{f}_{S}(\mathbf{x}_{S})$ \rightarrow $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ cancels out due to the subtraction of value functions

SHAPLEY VALUE - DEFINITION \rightarrow [Shapley \(1953\)](https://doi.org/10.7249/P0295) \rightarrow [Strumbelj et al. \(2014\)](https://doi.org/10.1007/s10115-013-0679-x)

Shapley value ϕ*^j* of feature *j* for observation **x** via **order definition**:

$$
\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \underbrace{\hat{f}_{S_j^{\tau} \cup \{j\}}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}) - \hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})}_{\text{marginal contribution of feature } j}
$$

Interpretation: Feature x_j contributed ϕ_j to difference between $\hat{f}(\mathbf{x})$ and average \bullet prediction

 \rightsquigarrow Note: Marginal contributions and Shapley values can be negative

For exact computation of $\phi_j(\mathbf{x})$, the PD function $\hat{f}_S(\mathbf{x}_S) = \frac{1}{n}\sum_{i=1}^n \hat{f}(\mathbf{x}_S,\mathbf{x}_{-S}^{(i)})$ for any set of features *S* can be used which yields

$$
\phi_j(\mathbf{x}) = \frac{1}{|P|! \cdot n} \sum_{\tau \in \Pi} \sum_{i=1}^n \hat{f}(\mathbf{x}_{S_i^{\tau} \cup \{j\}}, \mathbf{x}_{-\{S_i^{\tau} \cup \{j\}\}}^{(i)}) - \hat{f}(\mathbf{x}_{S_i^{\tau}}, \mathbf{x}_{-S_i^{\tau}}^{(i)})
$$

⇝ Note: ˆ*f^S* marginalizes over all other features −*S* using all observations $i = 1, \ldots, n$

Exact Shapley value computation is problematic for high-dimensional feature spaces

 \rightarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features

Exact Shapley value computation is problematic for high-dimensional feature spaces

 \rightarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features

Additional problem due to estimation of the marginal prediction $\hat{f}_{S^{\tau}_{l}}$: Averaging over the entire data set for each coalition \mathcal{S}^τ_j introduced by τ can be very expensive for large data sets

Exact Shapley value computation is problematic for high-dimensional feature spaces

 \rightarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features

- Additional problem due to estimation of the marginal prediction $\hat{f}_{S^{\tau}_{l}}$: Averaging over the entire data set for each coalition \mathcal{S}^τ_j introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of M random samples of τ to build coalitions *S* τ *j*

Exact Shapley value computation is problematic for high-dimensional feature spaces

 \rightarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features

- Additional problem due to estimation of the marginal prediction $\hat{f}_{S^{\tau}_{l}}$: Averaging over the entire data set for each coalition \mathcal{S}^τ_j introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of M random samples of τ to build coalitions *S* τ *j*
- *M* is a tradeoff between accuracy of the Shapley value and computational costs \rightsquigarrow The higher *M*, the closer to the exact Shapley values, but the more costly the computation

APPROXIMATION ALGORITHM \rightarrow [Strumbelj et al. \(2014\)](https://doi.org/10.1007/s10115-013-0679-x)

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*: **1** For $m = 1, ..., M$ do:

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*:

- **1** For $m = 1, ..., M$ do:
	- **1** Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(\rho)}) \in \Pi$

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*:

- **1** For $m = 1, ..., M$ do:
	- **1** Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(\rho)}) \in \Pi$
	- **2** Determine coalition $\mathcal{S}_m := \mathcal{S}_j^\tau$, i.e., the set of feat. before feat. *j* in order τ

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*:

- **1** For $m = 1, ..., M$ do:
	- **1** Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(\rho)}) \in \Pi$
	- **2** Determine coalition $\mathcal{S}_m := \mathcal{S}_j^\tau$, i.e., the set of feat. before feat. *j* in order τ
	- **³** Select random data point **z** (*m*) ∈ D

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*:

1 For $m = 1, ..., M$ do:

- **1** Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(\rho)}) \in \Pi$
- **2** Determine coalition $\mathcal{S}_m := \mathcal{S}_j^\tau$, i.e., the set of feat. before feat. *j* in order τ
- **³** Select random data point **z** (*m*) ∈ D
- **⁴** Construct two artificial obs. by replacing feature values from **x** with **z** (*m*) :

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*:

1 For $m = 1, ..., M$ do:

- **1** Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(\rho)}) \in \Pi$
- **2** Determine coalition $\mathcal{S}_m := \mathcal{S}_j^\tau$, i.e., the set of feat. before feat. *j* in order τ
- **³** Select random data point **z** (*m*) ∈ D

⁴ Construct two artificial obs. by replacing feature values from **x** with **z** (*m*) :

•
$$
\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j, z_{\tau^{(|S_m|+1)}}, \dots, z_{\tau^{(p)}}^{(m)})
$$
 takes features
\n
$$
s_m \cup \{j\} \text{ from } \mathbf{x}
$$

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*:

1 For $m = 1, ..., M$ do:

- **1** Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(\rho)}) \in \Pi$
- **2** Determine coalition $\mathcal{S}_m := \mathcal{S}_j^\tau$, i.e., the set of feat. before feat. *j* in order τ
- **³** Select random data point **z** (*m*) ∈ D

⁴ Construct two artificial obs. by replacing feature values from **x** with **z** (*m*) :

S^m from **x**

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*:

1 For $m = 1, ..., M$ do:

- **1** Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(\rho)}) \in \Pi$
- **2** Determine coalition $\mathcal{S}_m := \mathcal{S}_j^\tau$, i.e., the set of feat. before feat. *j* in order τ
- **³** Select random data point **z** (*m*) ∈ D

⁴ Construct two artificial obs. by replacing feature values from **x** with **z** (*m*) :

 $\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_{j})$ ${\bf x}_{s_m \cup \{i\}}$ **x***Sm*∪{*j*} $,z^{(m)}_{\tau^{(\mid s)}}$ $\tau^{(m)}_{\tau^{(|S_m|+1)}}, \ldots, z^{(m)}_{\tau^{(p)}}$ $\tau^{(\rho)}$ ${z^{(m)}}$ **z** (*m*) −{*Sm*∪{*j*}}) takes features *S*^{*m*} ∪ {*j*} from **x**

$$
\bullet\ \mathbf{x}_{-j}^{(m)}=(\underbrace{x_{\tau^{(1)}},\ldots,x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m}},\underbrace{z_j^{(m)},z_{\tau^{(|S_m|+1)}}^{(m)},\ldots,z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-S_m}^{(m)}}) \textrm{ takes features}
$$

S^m from **x**

5 Compute difference $\phi^m_j = \hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)})$ $\rightsquigarrow \hat{f}_{\mathcal{S}_m}(\mathbf{x}_{\mathcal{S}_m})$ is approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}_{\mathcal{S}_m\cup\{j\}}(\mathbf{x}_{\mathcal{S}_m\cup\{j\}})$ by $\hat{f}(\mathbf{x}_{+j}^{(m)})$ over *M* iters.

Estimation of ϕ*^j* for observation **x** of model ˆ*f* fitted on data D using sample size *M*:

1 For $m = 1, ..., M$ do:

- **1** Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(\rho)}) \in \Pi$
- **2** Determine coalition $\mathcal{S}_m := \mathcal{S}_j^\tau$, i.e., the set of feat. before feat. *j* in order τ
- **³** Select random data point **z** (*m*) ∈ D

⁴ Construct two artificial obs. by replacing feature values from **x** with **z** (*m*) :

 $\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_{j})$ ${\bf x}_{s_m \cup \{i\}}$ **x***Sm*∪{*j*} $,z^{(m)}_{\tau^{(\mid s)}}$ $\tau^{(m)}_{\tau^{(|S_m|+1)}}, \ldots, z^{(m)}_{\tau^{(p)}}$ $\tau^{(\rho)}$ ${z^{(m)}}$ **z** (*m*) −{*Sm*∪{*j*}}) takes features *S*^{*m*} ∪ {*j*} from **x**

$$
\bullet \; \; \mathbf{x}_{-j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \ldots, x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m}}, \underbrace{z_j^{(m)}, z_{\tau^{(|S_m|+1)}}^{(m)}, \ldots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-S_m}^{(m)}}) \text{ takes features}
$$

S^m from **x**

5 Compute difference $\phi^m_j = \hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)})$ $\rightsquigarrow \hat{f}_{\mathcal{S}_m}(\mathbf{x}_{\mathcal{S}_m})$ is approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}_{\mathcal{S}_m\cup\{j\}}(\mathbf{x}_{\mathcal{S}_m\cup\{j\}})$ by $\hat{f}(\mathbf{x}_{+j}^{(m)})$ over *M* iters.

• Compute Shapley value
$$
\phi_j = \frac{1}{M} \sum_{m=1}^{M} \phi_j^m
$$

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

- $\Delta(j,S_m)=\hat{f}(\mathbf{x}_{+j}^{(m)})-\hat{f}(\mathbf{x}_{-j}^{(m)})$ is the marginal contribution of feature j to coalition *S^m*
- Here: Feature *year* contributes +700 bike rentals if it joins coalition $S_m = \{temp, hum\}$

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

 $\phi_j(\mathbf{x}) = \frac{1}{M}$ X *M m*=1 $\left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$ average the contributions of feature *j*

- Compute marginal contribution of feature *j* towards the prediction across all randomly drawn feature coalitions S_1, \ldots, S_m
- Average all *M* marginal contributions of feature *j*
- Shapley value ϕ*^j* is the payout of feature *j*, i.e., how much feature *year* contributed to the overall prediction in bicycle counts of a specific observation **x**

We take the general axioms for Shapley Values and apply it to predictions:

 $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$ **Efficiency**: Shapley values add up to the (centered) prediction:

We take the general axioms for Shapley Values and apply it to predictions:

- $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$ **Efficiency**: Shapley values add up to the (centered) prediction:
- **Symmetry**: Two features *j* and *k* that contribute the same to the prediction get the same payout \rightarrow interaction effects between features are fairly divided $\hat{f}_{S\cup\{i\}}(\mathbf{x}_{S\cup\{i\}}) = \hat{f}_{S\cup\{k\}}(\mathbf{x}_{S\cup\{k\}})$ for all $S ⊆ P \setminus \{j, k\}$ then $\phi_j = \phi_k$

We take the general axioms for Shapley Values and apply it to predictions:

- $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$ **Efficiency**: Shapley values add up to the (centered) prediction:
- **Symmetry**: Two features *j* and *k* that contribute the same to the prediction get the same payout \rightsquigarrow interaction effects between features are fairly divided $\hat{f}_{S\cup\{i\}}(\mathbf{x}_{S\cup\{i\}}) = \hat{f}_{S\cup\{k\}}(\mathbf{x}_{S\cup\{k\}})$ for all $S ⊆ P \setminus \{j, k\}$ then $\phi_j = \phi_k$
- **Dummy / Null Player**: Shapley value of a feature that does not influence the prediction is zero \rightsquigarrow if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero $\hat{f}_{S \cup \{i\}}(\mathbf{x}_{S \cup \{i\}}) = \hat{f}_S(\mathbf{x}_S)$ for all $S \subseteq P$ then $\phi_i = 0$

We take the general axioms for Shapley Values and apply it to predictions:

- $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$ **Efficiency**: Shapley values add up to the (centered) prediction:
- **Symmetry**: Two features *j* and *k* that contribute the same to the prediction get the same payout \rightarrow interaction effects between features are fairly divided $\hat{f}_{S \cup \{i\}}(\mathbf{x}_{S \cup \{i\}}) = \hat{f}_{S \cup \{k\}}(\mathbf{x}_{S \cup \{k\}})$ for all *S* ⊆ *P* \ {*j*, *k*} then $\phi_i = \phi_k$
- **Dummy / Null Player**: Shapley value of a feature that does not influence the prediction is zero \rightsquigarrow if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero $\hat{f}_{S \cup \{i\}}(\mathbf{x}_{S \cup \{i\}}) = \hat{f}_S(\mathbf{x}_S)$ for all $S \subseteq P$ then $\phi_i = 0$
- **Additivity**: For a prediction with combined payouts, the payout is the sum of payouts: $\phi_i(\mathbf{v}_1) + \phi_i(\mathbf{v}_2) \leadsto$ Shapley values for model ensembles can be combined

BIKE SHARING DATASET

- \bullet Shapley values of observation $i = 200$ from the bike sharing data
- Difference between model prediction of this observation and the average prediction of the data is fairly distributed among the features (i.e., $4434 - 4507 \approx -73$
- \bullet Feature value temp = 28.5 has the most positive effect, with a contribution (increase of prediction) of about +400

ADVANTAGES AND DISADVANTAGES

Advantages:

- **Solid theoretical foundation** in game theory
- **●** Prediction is **fairly distributed** among the feature values \rightsquigarrow easy to interpret for a user
- **Contrastive explanations** that compare the prediction with the average prediction

Disadvantages:

- Without sampling, Shapley values need a lot of computing time to inspect all possible coalitions
- Like many other IML methods, Shapley values suffer from the inclusion of unrealistic data observations when features are correlated

