Interpretable Machine Learning

Shapley Values for Local Explanations

Learning goals

- See model predictions as a cooperative game
- Transfer the Shapley value concept from game theory to machine learning

• Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**

- Game: Make prediction $\hat{f}(x_1, x_2, ..., x_p)$ for a single observation **x**
- Players: Features x_j, j ∈ {1,..., p} which cooperate to produce a prediction
 → How can we make a prediction with a subset of features without changing the model?

 \rightsquigarrow PD function: $\hat{f}_{S}(\mathbf{x}_{S}) := \int_{X_{-S}} \hat{f}(\mathbf{x}_{S}, X_{-S}) d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)

- Game: Make prediction $\hat{f}(x_1, x_2, ..., x_p)$ for a single observation **x**
- Players: Features x_j, j ∈ {1,..., p} which cooperate to produce a prediction
 → How can we make a prediction with a subset of features without changing the model?

 \rightsquigarrow PD function: $\hat{f}_{S}(\mathbf{x}_{S}) := \int_{X_{-S}} \hat{f}(\mathbf{x}_{S}, X_{-S}) d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)

• Value function / payout of coalition $S \subseteq P$ for observation **x**:

$$v(\mathcal{S}) = \hat{f}_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x})), \text{ where } \hat{f}_{\mathcal{S}} : \mathcal{X}_{\mathcal{S}} \mapsto \mathcal{Y}$$

 \rightsquigarrow subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that v is a value function with $v(\emptyset) = 0$

$$\mathbb{E}(\hat{f}(\mathbf{x})) \xrightarrow{x_1} \hat{f}_S(\mathbf{x}_S)$$

- Game: Make prediction $\hat{f}(x_1, x_2, ..., x_p)$ for a single observation **x**
- Players: Features x_j, j ∈ {1,..., p} which cooperate to produce a prediction
 → How can we make a prediction with a subset of features without changing the model?

 \rightsquigarrow PD function: $\hat{f}_{S}(\mathbf{x}_{S}) := \int_{X_{-S}} \hat{f}(\mathbf{x}_{S}, X_{-S}) d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)

• Value function / payout of coalition $S \subseteq P$ for observation **x**:

$$v(\mathcal{S}) = \hat{f}_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x})), ext{ where } \hat{f}_{\mathcal{S}} : \mathcal{X}_{\mathcal{S}} \mapsto \mathcal{Y}$$

 \rightsquigarrow subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that v is a value function with $v(\emptyset) = 0$

Marginal contribution: v(S ∪ {j}) − v(S) = f_{S∪{j}(**x**_{S∪{j}}) − f_S(**x**_S) → E_{**x**}(f̂(**x**)) cancels out due to the subtraction of value functions

Shapley value ϕ_i of feature *j* for observation **x** via order definition:

$$\phi_{j}(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \hat{f}_{S_{j}^{\tau} \cup \{j\}}(\mathbf{x}_{S_{j}^{\tau} \cup \{j\}}) - \hat{f}_{S_{j}^{\tau}}(\mathbf{x}_{S_{j}^{\tau}})$$
marginal contribution of feature *j*

• Interpretation: Feature x_j contributed ϕ_j to difference between $\hat{f}(\mathbf{x})$ and average prediction

 \rightsquigarrow Note: Marginal contributions and Shapley values can be negative

• For exact computation of $\phi_j(\mathbf{x})$, the PD function $\hat{f}_S(\mathbf{x}_S) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)})$ for any set of features *S* can be used which yields

$$\phi_j(\mathbf{x}) = \frac{1}{|\mathbf{P}|! \cdot \mathbf{n}} \sum_{\tau \in \Pi} \sum_{i=1}^n \hat{f}(\mathbf{x}_{S_j^\tau \cup \{j\}}, \mathbf{x}_{-\{S_j^\tau \cup \{j\}\}}^{(i)}) - \hat{f}(\mathbf{x}_{S_j^\tau}, \mathbf{x}_{-S_j^\tau}^{(i)})$$

 \rightsquigarrow Note: \hat{f}_S marginalizes over all other features -S using all observations i = 1, ..., n

• Exact Shapley value computation is problematic for high-dimensional feature spaces

 \rightsquigarrow For 10 features, there are already $|\textbf{\textit{P}}|!=$ 10! \approx 3.6 million possible orders of features

• Exact Shapley value computation is problematic for high-dimensional feature spaces

 \rightsquigarrow For 10 features, there are already $|\textbf{\textit{P}}|!=$ 10! \approx 3.6 million possible orders of features

 Additional problem due to estimation of the marginal prediction f̂_{S^τ}: Averaging over the entire data set for each coalition S^τ_j introduced by τ can be very expensive for large data sets

• Exact Shapley value computation is problematic for high-dimensional feature spaces

 \rightsquigarrow For 10 features, there are already $|\textbf{\textit{P}}|!=$ 10! \approx 3.6 million possible orders of features

- Additional problem due to estimation of the marginal prediction f
 _{Sj}^τ: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of *M* random samples of τ to build coalitions S_j^{τ}

• Exact Shapley value computation is problematic for high-dimensional feature spaces

 \rightsquigarrow For 10 features, there are already $|\textbf{\textit{P}}|!=$ 10! \approx 3.6 million possible orders of features

- Additional problem due to estimation of the marginal prediction f
 _{Sj}^τ: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of *M* random samples of τ to build coalitions S_i^{τ}
- *M* is a tradeoff between accuracy of the Shapley value and computational costs → The higher *M*, the closer to the exact Shapley values, but the more costly the computation

Estimation of ϕ_j for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*: **•** For m = 1, ..., M do:

Estimation of ϕ_j for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*:

- For *m* = 1, . . . , *M* do:
 - Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*:

- For *m* = 1, . . . , *M* do:
 - Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **9** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of feat. before feat. *j* in order τ

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*:

• For *m* = 1, . . . , *M* do:

- Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
- **9** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of feat. before feat. *j* in order τ
- Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*:

• For *m* = 1, ..., *M* do:

- Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
- **②** Determine coalition $S_m := S_j^{\tau}$, i.e., the set of feat. before feat. *j* in order τ
- Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
- Construct two artificial obs. by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*:

● For *m* = 1, ..., *M* do:

- Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
- **②** Determine coalition $S_m := S_j^{\tau}$, i.e., the set of feat. before feat. *j* in order τ
- Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
- Construct two artificial obs. by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}, \dots, x_{\tau^{(|S_m|-1)}, x_j}}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}, \dots, z_{\tau^{(p)}}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}^{(m)}})$$
 takes features
 $S_m \cup \{j\}$ from \mathbf{x}

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*:

• For m = 1, ..., M do:

- Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(p)}) \in \Pi$
- Determine coalition $S_m := S_i^{\tau}$, i.e., the set of feat. before feat. *j* in order τ 0
- Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ 0

Ø

 S_m from **x**

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*:

● For *m* = 1, . . . , *M* do:

- Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
- **②** Determine coalition $S_m := S_j^{\tau}$, i.e., the set of feat. before feat. *j* in order τ
- Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$

• Construct two artificial obs. by replacing feature values from **x** with $\mathbf{z}^{(m)}$: • $\mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \ldots, x_{\tau^{(|S_m|-1)}}, x_j}_{\tau^{(1)}}, \underbrace{z_{\tau^{(1)}}^{(m)}, \ldots, z_{\tau^{(p)}}^{(m)}}_{\tau^{(1)}})$ takes features

• $\mathbf{x}_{-j}^{(m)} = (\underbrace{x_{\tau^{(1)}, \dots, x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m} \cup \{j\}}, \underbrace{z_{j}^{(m)}, z_{\tau^{(|S_m|+1)}, \dots, z_{\tau^{(p)}}}_{\mathbf{x}_{(|S_m|+1)}, \dots, z_{\tau^{(p)}}^{(m)}})}_{\mathbf{x}_{S_m}^{(m)} \in \underbrace{z_{j}^{(m)}, z_{\tau^{(|S_m|+1)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{x}_{-S_m}^{(m)}}}_{\mathbf{x}_{S_m}^{(m)} \in \underbrace{z_{j}^{(m)}, z_{\tau^{(m)}}^{(m)}}_{\mathbf{x}_{-S_m}^{(m)}}}_{\mathbf{x}_{-S_m}^{(m)}})$ takes features

 S_m from **x**

• Compute difference $\phi_j^m = \hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)})$ $\rightsquigarrow \hat{f}_{S_m}(\mathbf{x}_{S_m})$ is approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}_{S_m \cup \{j\}}(\mathbf{x}_{S_m \cup \{j\}})$ by $\hat{f}(\mathbf{x}_{+j}^{(m)})$ over *M* iters.

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size *M*:

● For *m* = 1, . . . , *M* do:

- Select random order / perm. of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
- **②** Determine coalition $S_m := S_j^{\tau}$, i.e., the set of feat. before feat. *j* in order τ
- Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$

• Construct two artificial obs. by replacing feature values from **x** with $\mathbf{z}^{(m)}$: • $\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j, z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$ takes features

• $\mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}, \dots, x_{\tau^{(|S_m|-1)}, \mathbf{x}_j}}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}, \dots, z_{\tau^{(p)}}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}^{(m)}})$ takes reatures • $\mathbf{x}_{-j}^{(m)} = (\underbrace{x_{\tau^{(1)}, \dots, x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m}}, \underbrace{z_{j}^{(m)}, z_{\tau^{(|S_m|+1)}, \dots, z_{\tau^{(p)}}}^{(m)}}_{\mathbf{z}_{-S_m}^{(m)}})$ takes features

 S_m from **x**

• Compute difference $\phi_j^m = \hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)})$ $\rightsquigarrow \hat{f}_{S_m}(\mathbf{x}_{S_m})$ is approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}_{S_m \cup \{j\}}(\mathbf{x}_{S_m \cup \{j\}})$ by $\hat{f}(\mathbf{x}_{+j}^{(m)})$ over *M* iters.

2 Compute Shapley value
$$\phi_j = \frac{1}{M} \sum_{m=1}^{M} \phi_j^m$$

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

	Temperature	Humidity	Windspeed	Year
x	10.66	56	11	2012
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$-random: z_{year}^{(m)}$
				\overbrace{j}

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

- $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+j}^{(m)}) \hat{f}(\mathbf{x}_{-j}^{(m)})$ is the marginal contribution of feature *j* to coalition S_m
- Here: Feature *year* contributes +700 bike rentals if it joins coalition $S_m = \{temp, hum\}$

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

 $\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$

- Compute marginal contribution of feature *j* towards the prediction across all randomly drawn feature coalitions *S*₁,..., *S*_m
- Average all *M* marginal contributions of feature *j*
- Shapley value φ_j is the payout of feature j, i.e., how much feature year contributed to the overall prediction in bicycle counts of a specific observation x

We take the general axioms for Shapley Values and apply it to predictions:

• Efficiency: Shapley values add up to the (centered) prediction: $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$

We take the general axioms for Shapley Values and apply it to predictions:

- Efficiency: Shapley values add up to the (centered) prediction: $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- Symmetry: Two features *j* and *k* that contribute the same to the prediction get the same payout
 interaction effects between features are fairly divided

$$\hat{f}_{S\cup\{j\}}(\mathbf{x}_{S\cup\{j\}}) = \hat{f}_{S\cup\{k\}}(\mathbf{x}_{S\cup\{k\}})$$
 for all $S \subseteq P \setminus \{j, k\}$ then $\phi_j = \phi_k$

We take the general axioms for Shapley Values and apply it to predictions:

- Efficiency: Shapley values add up to the (centered) prediction: $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- **Dummy** / **Null Player**: Shapley value of a feature that does not influence the prediction is zero \rightsquigarrow if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero $\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) = \hat{f}_{S}(\mathbf{x}_{S})$ for all $S \subseteq P$ then $\phi_{j} = 0$

We take the general axioms for Shapley Values and apply it to predictions:

- Efficiency: Shapley values add up to the (centered) prediction: $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- Dummy / Null Player: Shapley value of a feature that does not influence the prediction is zero → if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero

 *f*_{S∪{j}(**x**_{S∪{j}})</sub> = *f*_S(**x**_S) for all S ⊆ P then φ_j = 0
- Additivity: For a prediction with combined payouts, the payout is the sum of payouts: φ_j(v₁) + φ_j(v₂) → Shapley values for model ensembles can be combined

BIKE SHARING DATASET

- Shapley values of observation i = 200 from the bike sharing data
- Difference between model prediction of this observation and the average prediction of the data is fairly distributed among the features (i.e., $4434 4507 \approx -73$)
- Feature value temp = 28.5 has the most positive effect, with a contribution (increase of prediction) of about +400

ADVANTAGES AND DISADVANTAGES

Advantages:

- Solid theoretical foundation in game theory
- Prediction is **fairly distributed** among the feature values → easy to interpret for a user
- **Contrastive explanations** that compare the prediction with the average prediction

Disadvantages:

- Without sampling, Shapley values need a lot of computing time to inspect all possible coalitions
- Like many other IML methods, Shapley values suffer from the inclusion of unrealistic data observations when features are correlated

