
Interpretable Machine Learning

Shapley Values for Local Explanations

Learning goals

See model predictions as a cooperative game

Transfer the Shapley value concept from
game theory to machine learning



FROM GAME THEORY TO MACHINE LEARNING
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FROM GAME THEORY TO MACHINE LEARNING

Game: Make prediction f̂ (x1, x2, . . . , xp) for a single observation x

Players: Features xj , j ∈ {1, . . . , p} which cooperate to produce a prediction
⇝ How can we make a prediction with a subset of features without changing the
model?
⇝ PD function: f̂S(xS) :=

∫
X−S

f̂ (xS,X−S)dPX−S (“removing” by marginalizing
over −S)

Value function / payout of coalition S ⊆ P for observation x:

v(S) = f̂S(xS)− Ex(̂f (x)), where f̂S : XS 7→ Y

⇝ subtraction of Ex(̂f (x)) ensures that v is a value function with v(∅) = 0

Marginal contribution: v(S ∪ {j})− v(S) = f̂S∪{j}(xS∪{j})− f̂S(xS)

⇝ Ex(̂f (x)) cancels out due to the subtraction of value functions
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SHAPLEY VALUE - DEFINITION Shapley (1953) Strumbelj et al. (2014)

Shapley value ϕj of feature j for observation x via order definition:

ϕj(x) =
1

|P|!
∑
τ∈Π

f̂Sτ
j ∪{j}(xSτ

j ∪{j})− f̂Sτ
j
(xSτ

j
)︸ ︷︷ ︸

marginal contribution of feature j

Interpretation: Feature xj contributed ϕj to difference between f̂ (x) and average
prediction
⇝ Note: Marginal contributions and Shapley values can be negative

For exact computation of ϕj(x), the PD function f̂S(xS) =
1
n

∑n
i=1 f̂ (xS, x

(i)
−S) for

any set of features S can be used which yields

ϕj(x) =
1

|P|! · n

∑
τ∈Π

n∑
i=1

f̂ (xSτ
j ∪{j}, x

(i)
−{Sτ

j ∪{j}})− f̂ (xSτ
j
, x(i)

−Sτ
j
)

⇝ Note: f̂S marginalizes over all other features −S using all observations
i = 1, . . . , n
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ESTIMATION: A PRACTICAL PROBLEM

Exact Shapley value computation is problematic for high-dimensional feature
spaces
⇝ For 10 features, there are already |P|! = 10! ≈ 3.6 million possible orders of
features

Additional problem due to estimation of the marginal prediction f̂Sτ
j

: Averaging
over the entire data set for each coalition Sτ

j introduced by τ can be very
expensive for large data sets

Solution to both problems is sampling: Instead of averaging over |P|! · n terms,
we approximate it using a limited amount of M random samples of τ to build
coalitions Sτ

j

M is a tradeoff between accuracy of the Shapley value and computational costs
⇝ The higher M, the closer to the exact Shapley values, but the more costly the
computation
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APPROXIMATION ALGORITHM Strumbelj et al. (2014)

Estimation of ϕj for observation x of model f̂ fitted on data D using sample size M:
1 For m = 1, . . . ,M do:

1 Select random order / perm. of feature indices τ = (τ (1), . . . , τ (p)) ∈ Π
2 Determine coalition Sm := Sτ

j , i.e., the set of feat. before feat. j in order τ
3 Select random data point z(m) ∈ D
4 Construct two artificial obs. by replacing feature values from x with z(m):

x(m)
+j = (xτ (1) , . . . , xτ (|Sm|−1) , xj︸ ︷︷ ︸

xSm∪{j}

, z(m)

τ (|Sm|+1) , . . . , z
(m)

τ (p)︸ ︷︷ ︸
z(m)

−{Sm∪{j}}

) takes features

Sm ∪ {j} from x

x(m)
−j = (xτ (1) , . . . , xτ (|Sm|−1)︸ ︷︷ ︸

xSm

, z(m)
j , z(m)

τ (|Sm|+1) , . . . , z
(m)

τ (p)︸ ︷︷ ︸
z(m)
−Sm

) takes features

Sm from x

5 Compute difference ϕm
j = f̂ (x(m)

+j )− f̂ (x(m)
−j )

⇝ f̂Sm(xSm) is approximated by f̂ (x(m)
−j ) and f̂Sm∪{j}(xSm∪{j}) by f̂ (x(m)

+j )
over M iters.

2 Compute Shapley value ϕj =
1
M

∑M
m=1 ϕ

m
j
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SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

ϕj(x) =
1
M

M∑
m=1

[
f̂ (x+j

(m))− f̂ (x−j
(m))

]
x: obs. of interest

x with feature values in
Sm (other are replaced)

x with feature values in
Sm ∪ {j}

10.66 56 2012

Temperature Humidity Windspeed Year

10.66 56

10.66 56 11 2012
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SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

ϕj(x) =
1
M

M∑
m=1

[
f̂ (x+j

(m))− f̂ (x−j
(m))

]
Contribution of feature j
to coalition Sm

:= ∆(j,Sm)

∆(j,Sm) = f̂ (x(m)
+j )− f̂ (x(m)

−j ) is the marginal contribution of feature j to coalition
Sm

Here: Feature year contributes +700 bike rentals if it joins coalition
Sm = {temp, hum}

10.66 56 2012
700

Temperature Humidity Windspeed Year

marginal 
contribution

10.66 56

10.66 56 11 2012
Count

4900

5600
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SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

ϕj(x) =
1
M

M∑
m=1

[
f̂ (x+j

(m))− f̂ (x−j
(m))

]
average the contributions
of feature j

Compute marginal contribution of feature j towards the prediction across all
randomly drawn feature coalitions S1, . . . ,Sm

Average all M marginal contributions of feature j

Shapley value ϕj is the payout of feature j , i.e., how much feature year
contributed to the overall prediction in bicycle counts of a specific observation x

700 503 300 501

Shapley valueM
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REVISITED: AXIOMS FOR FAIR ATTRIBUTIONS
We take the general axioms for Shapley Values and apply it to predictions:

Efficiency: Shapley values add up to the (centered) prediction:∑p
j=1 ϕj = f̂ (x)− Ex(̂f (X))

Symmetry: Two features j and k that contribute the same to the prediction get
the same payout
⇝ interaction effects between features are fairly divided
f̂S∪{j}(xS∪{j}) = f̂S∪{k}(xS∪{k}) for all S ⊆ P \ {j, k} then ϕj = ϕk

Dummy / Null Player: Shapley value of a feature that does not influence the
prediction is zero⇝ if a feature was not selected by the model (e.g., tree or
LASSO), its Shapley value is zero
f̂S∪{j}(xS∪{j}) = f̂S(xS) for all S ⊆ P then ϕj = 0

Additivity: For a prediction with combined payouts, the payout is the sum of
payouts: ϕj(v1) + ϕj(v2)⇝ Shapley values for model ensembles can be
combined
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BIKE SHARING DATASET

yr=2011

days_since_2011=199

weekday=TUE

workingday=YES

holiday=NO

windspeed=8.7502

hum=65.0417

weathersit=CLEAR

mnth=JUL

season=SUMMER

temp=28.503349

−250 0 250
phi

Actual prediction: 4434.86
Average prediction: 4507.67

Shapley values of observation i = 200 from the bike sharing data

Difference between model prediction of this observation and the average
prediction of the data is fairly distributed among the features (i.e.,
4434 − 4507 ≈ −73)

Feature value temp = 28.5 has the most positive effect, with a contribution
(increase of prediction) of about +400
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ADVANTAGES AND DISADVANTAGES
Advantages:

Solid theoretical foundation in game theory

Prediction is fairly distributed among the feature values⇝ easy to interpret for
a user

Contrastive explanations that compare the prediction with the average
prediction

Disadvantages:

Without sampling, Shapley values need a lot of computing time to inspect all
possible coalitions

Like many other IML methods, Shapley values suffer from the inclusion of
unrealistic data observations when features are correlated

Interpretable Machine Learning – 9 / 9


