Interpretable Machine Learning

Shapley Values

- Learn what game theory is
- Understand the concept behind cooperative games
- Understand the Shapley value in game theory

COOPERATIVE GAMES IN GAME THEORY • Shapley (1951)

• Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value

COOPERATIVE GAMES IN GAME THEORY Shapley (1951)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout

COOPERATIVE GAMES IN GAME THEORY > Shapley (1951)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout
- A value function $v: 2^P \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)

COOPERATIVE GAMES IN GAME THEORY > Shapley (1951)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout
- A value function $v: 2^P \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$

COOPERATIVE GAMES IN GAME THEORY Shapley (1951)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout
- A value function $v: 2^P \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$
- As some players contribute more than others, we want to fairly divide the total achievable payout v(P) among the players according to a player's individual contribution

COOPERATIVE GAMES IN GAME THEORY Shapley (1951)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout
- A value function $v: 2^P \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$
- As some players contribute more than others, we want to fairly divide the total achievable payout v(P) among the players according to a player's individual contribution
- We call the individual payout per player ϕ_i , $i \in P$ (later: Shapley value)

COOPERATIVE GAMES WITHOUT INTERACTIONS

COOPERATIVE GAMES WITHOUT INTERACTIONS

⇒ Fair Payouts are Trivial Without Interactions

COOPERATIVE GAMES WITH INTERACTIONS

⇒ Unclear how to fairly distribute payouts when players interact

COOPERATIVE GAMES WITH INTERACTIONS

Question: What is a fair payout for player "yellow"?

Idea: Compute marginal contribution of the player of interest across different coalitions

- Compute the total payout of each coalition
- Compute difference in payouts for each coalition with and without player "yellow" (= marginal contribution)
- Average marginal contributions using appropriate weights

COOPERATIVE GAMES WITH INTERACTIONS

Question: What is a fair payout for player "yellow"?

Idea: Compute marginal contribution of the player of interest across different

coalitions

- Compute the total payout of each coalition
- Compute difference in payouts for each coalition with and without player "yellow" (= marginal contribution)
- Average marginal contributions using appropriate weights

Note: Each marginal contribution is weighted w.r.t. number of possible orders of its coalition

 \rightsquigarrow More players in ${\mathcal S} \Rightarrow$ more orderings of ${\mathcal S}$

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

• Let $v(S \cup \{j\}) - v(S)$ be the marginal contribution of player j to coalition $S \rightsquigarrow$ measures how much a player j increases the value of a coalition S

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

- Let $v(S \cup \{j\}) v(S)$ be the marginal contribution of player j to coalition $S \rightarrow$ measures how much a player j increases the value of a coalition S
- Average marginal contributions for all possible coalitions S ⊆ P \ {j}
 → order of how players join the coalition matters ⇒ different weights depending on size of S

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

- Let $v(S \cup \{j\}) v(S)$ be the marginal contribution of player j to coalition $S \rightarrow$ measures how much a player j increases the value of a coalition S
- Average marginal contributions for all possible coalitions S ⊆ P \ {j}
 → order of how players join the coalition matters ⇒ different weights depending on size of S
- Shapley value via **set definition** (weighting via multinomial coefficient):

$$\phi_j = \sum_{S \subseteq P \setminus \{j\}} rac{|S|!(|P|-|S|-1)!}{|P|!} (v(S \cup \{j\}) - v(S))$$

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$

• Π : All possible orders of players (we have |P|! in total)

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = \frac{1}{|P|!} \sum_{\tau \in \Pi} (v(S_j^\tau \cup \{j\}) - v(S_j^\tau))$$

- S_j^{τ} : Set of players before player j in order $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ where $\tau^{(i)}$ is i-th element
 - \Rightarrow Example: Players 1, 2, 3 \Rightarrow

$$\Pi = \{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}$$

$$\rightsquigarrow$$
 For order $\tau = (2, 1, 3)$ and player of interest $j = 3 \Rightarrow S_i^{\tau} = \{2, 1\}$

$$\rightsquigarrow$$
 For order $\tau = (3, 1, 2)$ and player of interest $j = 1 \Rightarrow \hat{S_i^{\tau}} = \{3\}$

$$\rightsquigarrow$$
 For order $\tau = (3, 1, 2)$ and player of interest $j = 3 \Rightarrow S_i^{\tau} = \emptyset$

• Order definition: Marginal contribution of orders that yield set $S = \{1, 2\}$ is summed twice

$$\leadsto$$
 In set definition, it has the weight $\frac{2!(3-2-1)!}{3!}=\frac{2\cdot 0!}{6}=\frac{2}{6}$

SHAPLEY VALUE - COMMENTS ON ORDER DEFINITION

- Order and set definition are equivalent
- Reason: The number of orders which yield the same coalition S is |S|!(|P|-|S|-1)!
 - \Rightarrow There are |S|! possible orders of players within coalition S
 - \Rightarrow There are (|P| |S| 1)! possible orders of players without S and j

SHAPLEY VALUE - COMMENTS ON ORDER DEFINITION

- Order and set definition are equivalent
- Reason: The number of orders which yield the same coalition S is |S|!(|P|-|S|-1)!
 - \Rightarrow There are |S|! possible orders of players within coalition S
 - \Rightarrow There are (|P| |S| 1)! possible orders of players without S and j

Players before player *j* player *j* Players after player *j*

- Relevance of the order definition: Approximate Shapley values by sampling permutations
 - \rightsquigarrow randomly sample a fixed number of M permutations and average them:

$$\phi_j = \frac{1}{M} \sum_{\tau \in \Pi_M} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$

where $\Pi_M \subset \Pi$ is a random subset of Π containing only M orders of players

WEIGHTS FOR MARGINAL CONTRIBUTION - ILLUSTRATION

WEIGHTS FOR MARGINAL CONTRIBUTION - ILLUSTRATION

WEIGHTS FOR MARGINAL CONTRIBUTION - ILLUSTRATION

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 1 enters the coalition

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 2 enters the coalition

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 3 enters the coalition

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions

Why is this a fair payout solution? One possibility to define fair payouts are the following axioms for a given value function ν :

• **Efficiency**: Player contributions add up to the total payout of the game: $\sum_{i=1}^{p} \phi_i = v(P)$

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function *v*:

• **Symmetry**: Players $i, k \in P$ who contribute the same to any coalition get the

same payout:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

- **Efficiency**: Player contributions add up to the total payout of the game: $\sum_{i=1}^{p} \phi_i = v(P)$
- **Symmetry**: Players $j, k \in P$ who contribute the same to any coalition get the same payout:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

 Dummy/Null Player: Payout is 0 for players who don't contribute to the value of any coalition:

If
$$v(S \cup \{j\}) = v(S) \quad \forall \quad S \subseteq P \setminus \{j\}$$
, then $\phi_j = 0$

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

- **Efficiency**: Player contributions add up to the total payout of the game: $\sum_{i=1}^{p} \phi_i = v(P)$
- **Symmetry**: Players $j, k \in P$ who contribute the same to any coalition get the same payout:

If
$$v(S \cup \{j\}) = v(S \cup \{k\})$$
 for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

 Dummy/Null Player: Payout is 0 for players who don't contribute to the value of any coalition:

If
$$v(S \cup \{j\}) = v(S) \quad \forall \quad S \subseteq P \setminus \{j\}$$
, then $\phi_j = 0$

• Additivity: For a game v with combined payouts $v(S) = v_1(S) + v_2(S)$, the payout is the sum of payouts: $\phi_{j,v} = \phi_{j,v_1} + \phi_{j,v_2}$