Interpretable Machine Learning

Shapley Values

Learning goals

- Learn what game theory is
- Understand the concept behind cooperative games
- Understand the Shapley value in game theory

 Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players P = {1,..., p}, each subset of players S ⊆ P forms a coalition each coalition S achieves a certain payout

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players P = {1,..., p}, each subset of players S ⊆ P forms a coalition each coalition S achieves a certain payout
- A value function $v : 2^{P} \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players P = {1,..., p}, each subset of players S ⊆ P forms a coalition each coalition S achieves a certain payout
- A value function $v : 2^{P} \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players P = {1,..., p}, each subset of players S ⊆ P forms a coalition each coalition S achieves a certain payout
- A value function $v : 2^{P} \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$)
- As some players contribute more than others, we want to fairly divide the total achievable payout v(P) among the players according to a player's individual contribution

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors/agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players P = {1,..., p}, each subset of players S ⊆ P forms a coalition each coalition S achieves a certain payout
- A value function $v : 2^{P} \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$)
- As some players contribute more than others, we want to fairly divide the total achievable payout v(P) among the players according to a player's individual contribution
- We call the individual payout per player ϕ_j , $j \in P$ (later: Shapley value)

COOPERATIVE GAMES WITHOUT INTERACTIONS

COOPERATIVE GAMES WITHOUT INTERACTIONS

 \Rightarrow Fair Payouts are Trivial Without Interactions

COOPERATIVE GAMES WITH INTERACTIONS

 \Rightarrow Unclear how to fairly distribute payouts when players interact

COOPERATIVE GAMES WITH INTERACTIONS

Question: What is a fair payout for player "yellow"? **Idea:** Compute marginal contribution of the player of interest across different coalitions

- Compute the total payout of each coalition
- Compute difference in payouts for each coalition with and without player "yellow" (= marginal contribution)
- Average marginal contributions using appropriate weights

COOPERATIVE GAMES WITH INTERACTIONS

Question: What is a fair payout for player "yellow"? **Idea:** Compute marginal contribution of the player of interest across different coalitions

- Compute the total payout of each coalition
- Compute difference in payouts for each coalition with and without player "yellow" (= marginal contribution)
- Average marginal contributions using appropriate weights

Note: Each marginal contribution is weighted w.r.t. number of possible orders of its coalition \rightsquigarrow More players in $S \Rightarrow$ more orderings

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

Let v(S ∪ {j}) − v(S) be the marginal contribution of player j to coalition S
 → measures how much a player j increases the value of a coalition S

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

- Let v(S ∪ {j}) − v(S) be the marginal contribution of player *j* to coalition S
 → measures how much a player *j* increases the value of a coalition S
- Average marginal contributions for all possible coalitions S ⊆ P \ {j}
 → order of how players join the coalition matters ⇒ different weights depending on size of S

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

- Let v(S ∪ {j}) − v(S) be the marginal contribution of player j to coalition S
 → measures how much a player j increases the value of a coalition S
- Average marginal contributions for all possible coalitions S ⊆ P \ {j}
 → order of how players join the coalition matters ⇒ different weights depending on size of S
- Shapley value via **set definition** (weighting via multinomial coefficient):

$$\phi_j = \sum_{S \subseteq P \setminus \{j\}} \frac{|S|!(|P| - |S| - 1)!}{|P|!} (v(S \cup \{j\}) - v(S))$$

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = rac{1}{|\mathcal{P}|!} \sum_{ au \in \Pi} (\mathbf{v}(\mathcal{S}_j^ au \cup \{j\}) - \mathbf{v}(\mathcal{S}_j^ au))$$

• Π : All possible orders of players (we have |P|! in total)

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = rac{1}{|\mathcal{P}|!} \sum_{ au \in \Pi} (\mathbf{v}(\mathcal{S}_j^ au \cup \{j\}) - \mathbf{v}(\mathcal{S}_j^ au))$$

- Π : All possible orders of players (we have |P|! in total)
- S_j^{τ} : Set of players before player *j* in order $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ where $\tau^{(i)}$ is *i*-th element

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = rac{1}{|\mathcal{P}|!} \sum_{ au \in \Pi} (\mathbf{v}(\mathcal{S}_j^ au \cup \{j\}) - \mathbf{v}(\mathcal{S}_j^ au))$$

- Π : All possible orders of players (we have |P|! in total)
- S_j^{τ} : Set of players before player *j* in order $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ where $\tau^{(i)}$ is *i*-th element

$$\Rightarrow$$
 Example: Players 1, 2, 3 \Rightarrow

$$\Pi = \{ (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) \}$$

- \rightsquigarrow For order $\tau = (2, 1, 3)$ and player of interest $j = 3 \Rightarrow S_j^{\tau} = \{2, 1\}$
- \rightsquigarrow For order $\tau = (3, 1, 2)$ and player of interest $j = 1 \Rightarrow S_j^{\tau} = \{3\}$
- \rightsquigarrow For order $\tau = (3, 1, 2)$ and player of interest $j = 3 \Rightarrow S_j^{\tau} = \emptyset$
- Order definition: Marginal contribution of orders that yield set S = {1,2} is summed twice

 \rightsquigarrow In set definition, it has the weight $\frac{2!(3-2-1)!}{3!}=\frac{2\cdot0!}{6}=\frac{2}{6}$

SHAPLEY VALUE - COMMENTS ON ORDER DEFINITION

- Order and set definition are equivalent
- Reason: The number of orders which yield the same coalition S is |S|!(|P| |S| 1)!
 - \Rightarrow There are |S|! possible orders of players within coalition S
 - \Rightarrow There are (|P| |S| 1)! possible orders of players without S and j

SHAPLEY VALUE - COMMENTS ON ORDER DEFINITION

- Order and set definition are equivalent
- Reason: The number of orders which yield the same coalition S is |S|!(|P| |S| 1)!
 - \Rightarrow There are $|\mathcal{S}|!$ possible orders of players within coalition \mathcal{S}
 - \Rightarrow There are (|P| |S| 1)! possible orders of players without S and j

Players before player j player j Players after player j
Relevance of the order definition: Approximate Shapley values by sampling permutations

 \rightsquigarrow randomly sample a fixed number of *M* permutations and average them:

$$\phi_j = \frac{1}{M} \sum_{\tau \in \Pi_M} (v(S_j^{\tau} \cup \{j\}) - v(S_j^{\tau}))$$

where $\Pi_M \subset \Pi$ is a random subset of Π containing only *M* orders of players

WEIGHTS FOR MARGINAL CONTRIBUTION - ILLUSTRATION

WEIGHTS FOR MARGINAL CONTRIBUTION -ILLUSTRATION

|S| = 0 weight = 1/6

₽ ₽

WEIGHTS FOR MARGINAL CONTRIBUTION - ILLUSTRATION

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 1 enters the coalition

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 2 enters the coalition

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 3 enters the coalition

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

• Efficiency: Player contributions add up to the total payout of the game: $\sum_{j=1}^{p} \phi_j = v(P)$

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

- Efficiency: Player contributions add up to the total payout of the game: $\sum_{j=1}^{p} \phi_j = v(P)$
- Symmetry: Players *j*, *k* ∈ *P* who contribute the same to any coalition get the same payout: If *v*(*S* ∪ {*j*}) = *v*(*S* ∪ {*k*}) for all *S* ⊆ *P* \ {*j*, *k*}, then φ_j = φ_k

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

- Efficiency: Player contributions add up to the total payout of the game: $\sum_{j=1}^{p} \phi_j = v(P)$
- Symmetry: Players *j*, *k* ∈ *P* who contribute the same to any coalition get the same payout: If *v*(*S* ∪ {*j*}) = *v*(*S* ∪ {*k*}) for all *S* ⊆ *P* \ {*j*, *k*}, then φ_j = φ_k
- Dummy/Null Player: Payout is 0 for players who don't contribute to the value of any coalition:
 If v(S ∪ {j}) = v(S) ∀ S ⊆ P \ {j}, then φ_i = 0

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

- Efficiency: Player contributions add up to the total payout of the game: $\sum_{j=1}^{p} \phi_j = v(P)$
- Symmetry: Players *j*, *k* ∈ *P* who contribute the same to any coalition get the same payout: If *v*(*S* ∪ {*j*}) = *v*(*S* ∪ {*k*}) for all *S* ⊆ *P* \ {*j*, *k*}, then φ_j = φ_k
- Dummy/Null Player: Payout is 0 for players who don't contribute to the value of any coalition:
 If v(S ∪ {j}) = v(S) ∀ S ⊆ P \ {j}, then φ_j = 0
- Additivity: For a game v with combined payouts $v(S) = v_1(S) + v_2(S)$, the payout is the sum of payouts: $\phi_{j,v} = \phi_{j,v_1} + \phi_{j,v_2}$

