Interpretable Machine Learning

Shapley Values

. - Learning goals

@ Learn what game theory is

Pl sl @ Understand the concept behind cooperative
G games

@ Understand the Shapley value in game theory




COOPERATIVE GAMES IN GAME THEORY

@ Game theory is the study of strategic games between players, “game” refers to
any series of interactions between actors/agents with gains and losses of
quantifiable utility value

@
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COOPERATIVE GAMES IN GAME THEORY

@ Game theory is the study of strategic games between players, “game” refers to
any series of interactions between actors/agents with gains and losses of
quantifiable utility value

@ Cooperative games: For all possible players P = {1,..., p}, each subset of
players S C P forms a coalition — each coalition S achieves a certain payout
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COOPERATIVE GAMES IN GAME THEORY

@ Game theory is the study of strategic games between players, “game” refers to
any series of interactions between actors/agents with gains and losses of
quantifiable utility value

@ Cooperative games: For all possible players P = {1,..., p}, each subset of
players S C P forms a coalition — each coalition S achieves a certain payout

@ A value function v : 27 — R maps all 2!P! possible coalitions to their payout (or
gain)
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COOPERATIVE GAMES IN GAME THEORY

@ Game theory is the study of strategic games between players, “game” refers to
any series of interactions between actors/agents with gains and losses of
quantifiable utility value

@ Cooperative games: For all possible players P = {1,..., p}, each subset of
players S C P forms a coalition — each coalition S achieves a certain payout

@ A value function v : 27 — R maps all 2!P! possible coalitions to their payout (or
gain)

@ v(S) is the payout of coalition S C P (payout of empty coalition must be zero:

v(0) =0)
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COOPERATIVE GAMES IN GAME THEORY

@ Game theory is the study of strategic games between players, “game” refers to
any series of interactions between actors/agents with gains and losses of
quantifiable utility value

@ Cooperative games: For all possible players P = {1,..., p}, each subset of
players S C P forms a coalition — each coalition S achieves a certain payout

@ A value function v : 27 — R maps all 2!P! possible coalitions to their payout (or

gain)
@ v(S) is the payout of coalition S C P (payout of empty coalition must be zero:
v(0) =0)

@ As some players contribute more than others, we want to fairly divide the total
achievable payout v(P) among the players according to a player’s individual
contribution
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COOPERATIVE GAMES IN GAME THEORY

Game theory is the study of strategic games between players, “game” refers to
any series of interactions between actors/agents with gains and losses of
quantifiable utility value

Cooperative games: For all possible players P = {1, ..., p}, each subset of
players S C P forms a coalition — each coalition S achieves a certain payout

A value function v : 27 — R maps all 2!?! possible coalitions to their payout (or
gain)

v(S) is the payout of coalition S C P (payout of empty coalition must be zero:
v(D) = 0)

As some players contribute more than others, we want to fairly divide the total
achievable payout v(P) among the players according to a player’s individual
contribution

We call the individual payout per player ¢;, j € P (later: Shapley value)
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COOPERATIVE GAMES WITHOUT INTERACTIONS
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COOPERATIVE GAMES WITHOUT INTERACTIONS

Players do not interact
(payouts # add up in each coalition)
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Trininirin®
6000 €

= Fair Payouts are Trivial Without Interactions
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COOPERATIVE GAMES WITH INTERACTIONS

Players interact
Players interact

(payouts # do not add up)
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= Unclear how to fairly distribute payouts when players interact
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COOPERATIVE GAMES WITH INTERACTIONS

Question: What is a fair payout for player “yellow”?
Idea: Compute marginal contribution of the player of interest across different
coalitions

Add j\/to the coalition

o>€o

| Ty
-+ 10 _ IR
Sl S5 b T 3%
A O O ¢ 5t

@ Compute the total payout of each coalition

@ Compute difference in payouts for each coalition
with and without player “yellow” (= marginal
contribution)

@ Average marginal contributions using appropriate
weights
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COOPERATIVE GAMES WITH INTERACTIONS

Question: What is a fair payout for player “yellow”?
Idea: Compute marginal contribution of the player of interest across different
coalitions
Note: Each marginal contribution is
Add j\/to the coalition . .
weighted w.r.t. number of possible
orders of its coalition
~+ More players in S = more orderings

x % ]
el ‘ ) j% i oS
. T% 3T
e O O ¢ T3t

Is|=2
weight = 216

4

ISI-=,\1‘ 16 ® ﬂ;;«:vs \I/

gt =

@ Compute the total payout of each coalition \X

@ Compute difference in payouts for each coalition (AT I Bt e I
with and without player “yellow” (= marginal ) o e
contribution) Vight= 16 X I o

@ Average marginal contributions using appropriate oo o Wom=ze L i
weights weight = 1/6 E X
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SHAPLEY VALUE - SET DEFINITION

This idea refers to the Shapley value which assigns a payout value to each player
according to its marginal contribution in all possible coalitions.

@ Let v(S U {j}) — v(S) be the marginal contribution of player j to coalition S
~~ measures how much a player j increases the value of a coalition S
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SHAPLEY VALUE - SET DEFINITION

This idea refers to the Shapley value which assigns a payout value to each player
according to its marginal contribution in all possible coalitions.

@ Let v(S U {j}) — v(S) be the marginal contribution of player j to coalition S
~~ measures how much a player j increases the value of a coalition S

@ Average marginal contributions for all possible coalitions S C P\ {j}
~ order of how players join the coalition matters = different weights depending
on size of S
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SHAPLEY VALUE - SET DEFINITION

This idea refers to the Shapley value which assigns a payout value to each player
according to its marginal contribution in all possible coalitions.

@ Let v(S U {j}) — v(S) be the marginal contribution of player j to coalition S
~~ measures how much a player j increases the value of a coalition S

@ Average marginal contributions for all possible coalitions S C P\ {j}
~ order of how players join the coalition matters = different weights depending
on size of S

@ Shapley value via set definition (weighting via multinomial coefficient):

o= ¥ BHEZE=Dusu gy - vs)
SCP\{j} '
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SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets S C P\ {j}, but it can be
equivalently defined as a summation of all orders of players:

¢ = “l—“ SO WS U - v(ST))

Tel

@ [1: All possible orders of players (we have |P|! in total)
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SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets S C P\ {j}, but it can be
equivalently defined as a summation of all orders of players:

¢ = “l—“ SO WS U - v(ST))

Tel

@ [1: All possible orders of players (we have |P|! in total)
@ S7: Set of players before player jin order 7 = (7("), ..., 7(P)) where 7() is i-th
element
= Example: Players 1,2,3 =
n=1{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}
~~ For order 7 = (2,1, 3) and player of interest j = 3 = ST = {2,1}
~~ For order 7 = (3, 1,2) and player of interest j = 1 = ST = {3}
~~ For order 7 = (3, 1,2) and player of interestj = 3 = ST = 0)
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SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets S C P\ {j}, but it can be
equivalently defined as a summation of all orders of players:

¢ = “l—“ SO WS U - v(ST))

Tel

@ [1: All possible orders of players (we have |P|! in total)
@ S7: Set of players before player jin order 7 = (7("), ..., 7(P)) where 7() is i-th
element
= Example: Players 1,2,3 =
n={(1.2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}
~~ For order 7 = (2,1, 3) and player of interest j = 3 = ST = {2,1}
~~ For order 7 = (3, 1,2) and player of interest j = 1 = ST = {3}
~~ For order 7 = (3, 1,2) and player of interestj = 3 = ST = 0)
@ Order definition: Marginal contribution of orders that yield set S = {1,2} is
summed twice
~ In set definition, it has the weight 28-2-1" — 20l _ 2
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SHAPLEY VALUE - COMMENTS ON ORDER
DEFINITION

@ Order and set definition are equivalent

@ Reason: The number of orders which yield the same coalition S'is
IS1(1P| — |S] — 1)!
= There are |S|! possible orders of players within coalition S
= There are (|P| — |S| — 1)! possible orders of players without S and j

|S]! permutations (|P|—|S|—1)! permutations

(7O [ 700 | 0 [ S [ [ 7@ |

———

Players before player j player j Players after player j
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SHAPLEY VALUE - COMMENTS ON ORDER
DEFINITION

@ Order and set definition are equivalent

@ Reason: The number of orders which yield the same coalition S'is
IS1(1P| — |S] — 1)!
= There are |S|! possible orders of players within coalition S
= There are (|P| — |S| — 1)! possible orders of players without S and j

|S]! permutations (|P|—|S|—1)! permutations

(7O [ 700 | 0 [ S [ [ 7@ |

———

Players before player j player j Players after player j
@ Relevance of the order definition: Approximate Shapley values by sampling
permutations
~~ randomly sample a fixed number of M permutations and average them:

6= 1 3 (ST UGN~ M(S)))

7€My

where Iy, C I is a random subset of 1 containing only M orders of players
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WEIGHTS FOR MARGINAL CONTRIBUTION -
ILLUSTRATION
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WEIGHTS FOR MARGINAL CONTRIBUTION -

ILLUSTRATION
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IS|=2
weight = 1/6

ISI=2
weight = 1/6
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weight = 1/6

ISI=1
weight = 1/6

IS|=0
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WEIGHTS FOR MARGINAL CONTRIBUTION -

ILLUSTRATION

TIx
TTx
TIx
Tt%
TIx
TXx

IS|=2
weight = 1/6

ISI=2
weight = 1/6

IS1=1
weight = 1/6

ISI=1
weight = 1/6

IS|=0
weight = 1/6

ISI=0
weight = 1/6

via sets

IS|=2 ®
weight = 2/6 T
Isl=1 )
weight = 1/6 T
1S|=1 [ J
weight = 1/6 T
)

ISI=0
weight = 2/6
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SHAPLEY VALUES - ILLUSTRATION

@ Shapley value of player j is the marginal contribution to the value when it enters
any coalition

@ Produce all possible joining orders of player coalitions

joining empty player joins player joins player joins
order coalition coalition coalition coalition

[S=07 1.2, S={1.2 |3, S={1.2,3}
12,3 [ +1000) +4000, +6000) 1000

(payout of coalition S)
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SHAPLEY VALUES - ILLUSTRATION

@ Shapley value of player j is the marginal contribution to the value when it enters
any coalition

@ Produce all possible joining orders of player coalitions
@ Measure and average the difference in payout after player 1 enters the coalition

joining ~ empty player joins player joins player joins
order  coalition coalition coalition coalition

(S=M L2, S=0.2 | 8, S={L23F ) 1000
+1000 +4000) +6000

S={1} L3 [ s={1,3) | .2 s={1,2,3)]

+1000 +4000 +e000) *1000

2 s={2)] >[ S={1,2y |3 s={1,2,3)0]+2000

+2000) +4000, +600
2 [s={2 .3, s={2,3} S S=(L23 | 000
+2000) +3000 +6000)
3,[s=3 ]7 >[ $={1,3} |2, S={1,2,3} ] +1000
+3000 +4000 +6000
§=0) 3 (5= |2 s=(2,3}] [ $={1,2,3 ]
321 9 +3000) +3000 +600g] 3000

.
Shapley value of player 1 j\/ +1833.33
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SHAPLEY VALUES - ILLUSTRATION

@ Shapley value of player j is the marginal contribution to the value when it enters
any coalition

@ Produce all possible joining orders of player coalitions

@ Measure and average the difference in payout after player 2 enters the coalition

joining ~ empty player joins player joins player joins
order  coalition coalition coalition coalition

S=o) 4 [ S=( | 2.( 5=12 |3, S=(123 ) 2000
0 +1000 +4000) +6000) 7

S=o) 1 (S=(1y L.3,( s=(.3& ) 2. S=(123
1.3.2 9 +1000 +4000] [ ] 2000

$={2 S={1,2} |.3,[ S={1,23} ] +2000
+2000) +4000, +6000)
s={2 S={2,3} | 1,[ $={1,23 ] +2000
+2000) +3000 +6000)
S§=2) 3 [ $={3 $={1,3} ]; >[ $={1,2,3} ] .
31,2 9 +3000 +4000 +600g) 2000
321 5773 s=(3)] />[ $={2,3) |_1,[ $={1,2,3} ] +0
e 9 +3000) +3000 +6000)

Shapley value of player 2 {: +1833.33
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SHAPLEY VALUES - ILLUSTRATION

@ Shapley value of player j is the marginal contribution to the value when it enters

any coalition

@ Produce all possible joining orders of player coalitions

@ Measure and average the difference in payout after player 3 enters the coalition

joining
order

empty
coalition

S=0) 1

1

player joins player joins player joins
coalition coalition coalition
S={1} §={1.2} | 2 [ S={1,2,3} 42000
+1000) +4000, +6000)
S={1} | 3 [ s={1,38} | 2 S={1,2,3} 43000
+1000) +4000 +6000)
1

S={2}

s=<1,2}] 3 [ S={1-2-3)O] +2000

+2000) +4000, +600
s={2)] 3 >[ S$={2,3 | 1,[ s={1,2,3 ] +1000
+2000) +3000 +6000)
S={3 S={1.3} . 2, s={1,2,3} ] 43000
+3000 +4000 +6000
S={3) §={2,3 ] 1, s={1,2,3} ] +3000
+3000 +3000 +6000

Shapley value of player 3 } +2333.33
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SHAPLEY VALUES - ILLUSTRATION

@ Shapley value of player j is the marginal contribution to the value when it enters
any coalition

@ Produce all possible joining orders of player coalitions

Players interact
(payouts % do not add up)

Players interact

\\l// ~]— N - P
e / e, ),
/ / )
s st st / ’
o ) ) K KJ /
\\K/ L/ \l’/ g \l/ T | 1essase 2333.336€
/' / /' /' /' 1
Triviririck \\ Science Competition
o \
)
S~ | Total Payout
RN
6000 €
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AXIOMS OF FAIR PAYOUTS

Why is this a fair payout solution?
One possibility to define fair payouts are the following axioms for a given value
function v:

@ Efficiency: Player contributions add up to the total payout of the game:

Yo &= v(P)
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AXIOMS OF FAIR PAYOUTS

Why is this a fair payout solution?
One possibility to define fair payouts are the following axioms for a given value
function v:

@ Efficiency: Player contributions add up to the total payout of the game:

Yo &= v(P)

@ Symmetry: Players j, k € P who contribute the same to any coalition get the
same payout:
If v(SU{j}) =v(SU{k})forall S C P\ {j, k}, then ¢; = ¢
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AXIOMS OF FAIR PAYOUTS

Why is this a fair payout solution?
One possibility to define fair payouts are the following axioms for a given value
function v:

@ Efficiency: Player contributions add up to the total payout of the game:

Yo &= v(P)

@ Symmetry: Players j, k € P who contribute the same to any coalition get the
same payout:
If v(SU{j}) =v(SU{k})forall S C P\ {j, k}, then ¢; = ¢

@ Dummy/Null Player: Payout is O for players who don’t contribute to the value of
any coalition:
fv(SU{j})=v(S) V SCP\{j} theng;=0
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AXIOMS OF FAIR PAYOUTS

Why is this a fair payout solution?
One possibility to define fair payouts are the following axioms for a given value
function v:

@ Efficiency: Player contributions add up to the total payout of the game:

Yo &= v(P)

@ Symmetry: Players j, k € P who contribute the same to any coalition get the
same payout:
If v(SU{j}) =v(SU{k})forall S C P\ {j, k}, then ¢; = ¢

@ Dummy/Null Player: Payout is O for players who don’t contribute to the value of
any coalition:
fv(SU{j})=v(S) V SCP\{j} theng;=0

@ Additivity: For a game v with combined payouts v(S) = v4(S) + v2(S), the
payout is the sum of payouts: ¢; v = ¢; v, + @1,

Interpretable Machine Learning — 10/ 10



