
Interpretable Machine Learning

Shapley Values

Learning goals

Learn what game theory is

Understand the concept behind cooperative
games

Understand the Shapley value in game theory



COOPERATIVE GAMES IN GAME THEORY Shapley (1951)

Game theory is the study of strategic games between players, “game” refers to
any series of interactions between actors/agents with gains and losses of
quantifiable utility value

Cooperative games: For all possible players P = {1, . . . , p}, each subset of
players S ⊆ P forms a coalition – each coalition S achieves a certain payout

A value function v : 2P 7→ R maps all 2|P| possible coalitions to their payout (or
gain)

v(S) is the payout of coalition S ⊆ P (payout of empty coalition must be zero:
v(∅) = 0)

As some players contribute more than others, we want to fairly divide the total
achievable payout v(P) among the players according to a player’s individual
contribution

We call the individual payout per player ϕj , j ∈ P (later: Shapley value)
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COOPERATIVE GAMES WITHOUT INTERACTIONS

Players do not interact
(payouts     add up in each coalition)

Game
Contributions

Total Payout

What is a
fair payout 
distribution?

1/6 1/2
1/3

Players do not interact

6 000 € 

? ? ?

⇒ Fair Payouts are Trivial Without Interactions
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COOPERATIVE GAMES WITHOUT INTERACTIONS

Players do not interact
(payouts     add up in each coalition)

Game
Contributions

Total Payout

1000 € 2000 € 3000 €

1/6 1/2
1/3

Players do not interact

6 000 € 

⇒ Fair Payouts are Trivial Without Interactions
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COOPERATIVE GAMES WITH INTERACTIONS

Players interact
(payouts     do not add up)

Game

Total Payout

What is a
fair payout 
distribution?

Players interact

6 000 € 

Contributions? ? ?

⇒ Unclear how to fairly distribute payouts when players interact
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COOPERATIVE GAMES WITH INTERACTIONS
Question: What is a fair payout for player “yellow”?
Idea: Compute marginal contribution of the player of interest across different
coalitions

All coalitions of players without Add     to the coalition 

● Compute total payout of each coalition
● Compute difference in total payout for 

each coalition with and without player
● Sum up weighted differences in total payout

|S| = 2

|S| = 1

|S| = 1

|S| = 0
(empty)

Compute the total payout of each coalition
Compute difference in payouts for each coalition
with and without player “yellow” (= marginal
contribution)
Average marginal contributions using appropriate
weights

Note: Each marginal contribution is
weighted w.r.t. number of possible
orders of its coalition
⇝ More players in S ⇒ more orderings
of S

|S| = 2
weight = 2/6

|S| = 1
weight = 1/6

|S| = 1
weight = 1/6

|S| = 0
weight = 2/6

|S| = 2
weight = 1/6

|S| = 1
weight = 1/6

|S| = 1
weight = 1/6

|S| = 0
weight = 1/6

|S| = 2
weight = 1/6

via sets

|S| = 0
weight = 1/6

|P|! = 6 orders via orders
(players before “yellow” player)
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SHAPLEY VALUE - SET DEFINITION
This idea refers to the Shapley value which assigns a payout value to each player
according to its marginal contribution in all possible coalitions.

Let v(S ∪ {j})− v(S) be the marginal contribution of player j to coalition S
⇝ measures how much a player j increases the value of a coalition S

Average marginal contributions for all possible coalitions S ⊆ P \ {j}
⇝ order of how players join the coalition matters ⇒ different weights depending
on size of S

Shapley value via set definition (weighting via multinomial coefficient):

ϕj =
∑

S⊆P\{j}

|S|!(|P| − |S| − 1)!
|P|!

(v(S ∪ {j})− v(S))
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SHAPLEY VALUE - ORDER DEFINITION
The Shapley value was introduced as summation over sets S ⊆ P \ {j}, but it can be
equivalently defined as a summation of all orders of players:

ϕj =
1

|P|!
∑
τ∈Π

(v(Sτ
j ∪ {j})− v(Sτ

j ))

Π: All possible orders of players (we have |P|! in total)

Sτ
j : Set of players before player j in order τ = (τ (1), . . . , τ (p)) where τ (i) is i-th

element
⇒ Example: Players 1, 2, 3 ⇒
Π = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}
⇝ For order τ = (2, 1, 3) and player of interest j = 3 ⇒ Sτ

j = {2, 1}
⇝ For order τ = (3, 1, 2) and player of interest j = 1 ⇒ Sτ

j = {3}
⇝ For order τ = (3, 1, 2) and player of interest j = 3 ⇒ Sτ

j = ∅
Order definition: Marginal contribution of orders that yield set S = {1, 2} is
summed twice
⇝ In set definition, it has the weight 2!(3−2−1)!

3! = 2·0!
6 = 2

6
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SHAPLEY VALUE - COMMENTS ON ORDER
DEFINITION

Order and set definition are equivalent
Reason: The number of orders which yield the same coalition S is
|S|!(|P| − |S| − 1)!
⇒ There are |S|! possible orders of players within coalition S
⇒ There are (|P| − |S| − 1)! possible orders of players without S and j

|S|! permutations︷ ︸︸ ︷ (|P|−|S|−1)! permutations︷ ︸︸ ︷
τ (1) . . . τ (|S|) τ (|S|+1) τ (|S|+2) . . . τ (p)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Players before player j player j Players after player j

Relevance of the order definition: Approximate Shapley values by sampling
permutations
⇝ randomly sample a fixed number of M permutations and average them:

ϕj =
1
M

∑
τ∈ΠM

(v(Sτ
j ∪ {j})− v(Sτ

j ))

where ΠM ⊂ Π is a random subset of Π containing only M orders of players
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WEIGHTS FOR MARGINAL CONTRIBUTION -
ILLUSTRATION

|P|! = 6 orders
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SHAPLEY VALUES - ILLUSTRATION

Shapley value of player j is the marginal contribution to the value when it enters
any coalition

Produce all possible joining orders of player coalitions

1 2

 (payout of coalition S)

1, 2, 3 +10003S = {1}
+1000

S = {1, 2}
+4000

S = {1, 2, 3}
+6000

S = ∅
0

player joins
coalition

empty
coalition

joining 
order

player joins
coalition

player joins
coalition

contribution 
of player 1
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SHAPLEY VALUES - ILLUSTRATION

Shapley value of player j is the marginal contribution to the value when it enters
any coalition

Produce all possible joining orders of player coalitions

Measure and average the difference in payout after player 1 enters the coalition

1

1

1

1

1

1

2

2

2

2

2

21, 2, 3

1, 3, 2

2, 1, 3

2, 3, 1

3, 1, 2

3, 2, 1

+1000

+1000

+2000

+3000

+1000

+3000

Shapley value of player 1     : +1833.33

player joins
coalition

empty
coalition

joining 
order

player joins
coalition

player joins
coalition

3

3

3

3

3

3

S = {1}
+1000

S = {1, 2}
+4000

S = {1, 2, 3}
+6000

S = ∅
0

S = {1}
+1000

S = {1, 3}
+4000

S = {1, 2, 3}
+6000

S = {2}
+2000

S = {1, 2}
+4000

S = {1, 2, 3}
+6000

S = {2}
+2000

S = {2, 3}
+3000

S = {1, 2, 3}
+6000

S = {3}
+3000

S = {1, 3}
+4000

S = {1, 2, 3}
+6000

S = {3}
+3000

S = {2, 3}
+3000

S = {1, 2, 3}
+6000

S = ∅
0

S = ∅
0

S = ∅
0

S = ∅
0

S = ∅
0

contribution 
of player 1

Interpretable Machine Learning – 9 / 10



SHAPLEY VALUES - ILLUSTRATION

Shapley value of player j is the marginal contribution to the value when it enters
any coalition

Produce all possible joining orders of player coalitions

Measure and average the difference in payout after player 2 enters the coalition

1, 2, 3

1, 3, 2

2, 1, 3

2, 3, 1

3, 1, 2

3, 2, 1

+3000

+2000

+2000

+2000

+2000

+0

+1833.33

player joins
coalition

empty
coalition

joining 
order

player joins
coalition

player joins
coalition

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

S = {1}
+1000

S = {1, 2}
+4000

S = {1, 2, 3}
+6000

S = ∅
0

S = {1}
+1000

S = {1, 3}
+4000

S = {1, 2, 3}
+6000

S = {2}
+2000

S = {1, 2}
+4000

S = {1, 2, 3}
+6000

S = {2}
+2000

S = {2, 3}
+3000

S = {1, 2, 3}
+6000

S = {3}
+3000

S = {1, 3}
+4000

S = {1, 2, 3}
+6000

S = {3}
+3000

S = {2, 3}
+3000

S = {1, 2, 3}
+6000

S = ∅
0

S = ∅
0

S = ∅
0

S = ∅
0

S = ∅
0

contribution 
of player 2

Shapley value of player 2     :
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SHAPLEY VALUES - ILLUSTRATION

Shapley value of player j is the marginal contribution to the value when it enters
any coalition

Produce all possible joining orders of player coalitions

Measure and average the difference in payout after player 3 enters the coalition

3

3

3

3

3

3

2

2

2

2

2

2

1, 2, 3

1, 3, 2

2, 1, 3

2, 3, 1

3, 1, 2

3, 2, 1

+2000

+3000

+2000

+1000

+3000

+3000

+2333.33

player joins
coalition

empty
coalition

joining 
order

player joins
coalition

player joins
coalition

1

1

1

1

1

1

S = {1}
+1000

S = {1, 2}
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S = {1, 2, 3}
+6000

S = ∅
0

S = {1}
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S = {1, 2}
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S = {1, 2, 3}
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S = {2}
+2000

S = {2, 3}
+3000

S = {1, 2, 3}
+6000

S = {3}
+3000

S = {1, 3}
+4000

S = {1, 2, 3}
+6000

S = {3}
+3000

S = {2, 3}
+3000

S = {1, 2, 3}
+6000

S = ∅
0

S = ∅
0

S = ∅
0

S = ∅
0

S = ∅
0

contribution 
of player 3

Shapley value of player 3     :
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SHAPLEY VALUES - ILLUSTRATION

Shapley value of player j is the marginal contribution to the value when it enters
any coalition

Produce all possible joining orders of player coalitions

Players interact
(payouts     do not add up)

Game

Total Payout

Players interact

6 000 € 

Contributions1833.33 € 1833.33 € 2333.33 €
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AXIOMS OF FAIR PAYOUTS
Why is this a fair payout solution?
One possibility to define fair payouts are the following axioms for a given value
function v :

Efficiency: Player contributions add up to the total payout of the game:∑p
j=1 ϕj = v(P)

Symmetry: Players j, k ∈ P who contribute the same to any coalition get the
same payout:
If v(S ∪ {j}) = v(S ∪ {k}) for all S ⊆ P \ {j, k}, then ϕj = ϕk

Dummy/Null Player: Payout is 0 for players who don’t contribute to the value of
any coalition:
If v(S ∪ {j}) = v(S) ∀ S ⊆ P \ {j}, then ϕj = 0

Additivity: For a game v with combined payouts v(S) = v1(S) + v2(S), the
payout is the sum of payouts: ϕj,v = ϕj,v1 + ϕj,v2
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payout is the sum of payouts: ϕj,v = ϕj,v1 + ϕj,v2
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AXIOMS OF FAIR PAYOUTS
Why is this a fair payout solution?
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