
Interpretable Machine Learning

Accumulated Local Effect (ALE) plot

ALE plot at X1 = 0 averages and

accumulates the local effect δ f(x1 X2)
δ x1

 over

the conditional distribution of X2 | X1 = x1

conditional distribution of X2 | X1 = 0
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Learning goals

PD plots and its extrapolation issue

M plots and its omitted-variable bias

Understand ALE plots



ACCUMULATED LOCAL EFFECTS (ALE) Apley, Zhu (2020)

ALE plots use the idea of integrating partial derivatives. They do not suffer from the
extrapolation issue of PD plots and the OVB issue of M plots when features are
dependent.

Concept of ALE plots is based on

1 estimating local effects ∂ f̂ (xS ,x−S)
∂xS

(via finite differences) evaluated at certain
points (xS = zS, x−S)

2 averaging local effects over conditional distribution P(x−S|xS) similar to M plots
⇒ Avoids extrapolation issue

3 integrating averaged local effects up to a specific value x ∼ P(xS)
⇒ Accumulates local effects to estimate global main effect of xS

⇒ Avoids OVB issue as other unwanted main effects were removed in (1)
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FIRST ORDER ALE

Let xS be feature of interest with z0 = min(xS) and x−S all other features
(complement of S)

Uncentered first order ALE f̃S,ALE(x) at feature value x ∼ P(xS) is defined as:

f̃S,ALE(x) =
∫ x

z0︸︷︷︸
(3)

Ex−S |xS︸ ︷︷ ︸
(2)

(
∂ f̂ (xS, x−S)

∂xS︸ ︷︷ ︸
(1)

∣∣∣∣xS = zS

)
dzS

Substract average of uncentered ALE curve (constant) to obtain centered ALE
curve fS,ALE(x) with zero mean regarding marginal distribution of feature of
interest xS :

fS,ALE(x) = f̃S,ALE(x)−
∫ ∞

−∞
f̃S,ALE(xS) dP(xS)︸ ︷︷ ︸

:=constant
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ALE ESTIMATION

Partial derivatives not useful for all models (e.g., tree-based methods)

Approximate them by finite differences of predictions within K intervals for xS :

x ∈ [min(xS),max(xS)] ⇐⇒ x ∈ [z0,S, z1,S]

∨x ∈ ]z1,S, z2,S]

. . .

∨x ∈ ]zK−1,S, zK ,S]

Create K intervals for feature xS , e.g., using quantiles as interval bounds

Interpretable Machine Learning – 3 / 11



2-D ILLUSTRATION
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Divide feature of interest into intervals (vertical lines)

For all points within an interval, compute prediction difference when we
replace feature value with upper/lower interval bound (blue points) while keeping
other feature values unchanged

These finite differences (approximate local effect) are accumulated & centered
⇒ ALE plot
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2-D ILLUSTRATION
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For x(i) = (x (i)
S , x(i)

−S), value x (i)
S is located within k -th interval of xS

(x (i)
S ∈ ]zk−1,S, zk,S])

Replace x (i)
S by upper/lower interval bound while all other feature values x(i)

−S are
kept constant

Finite differences correspond to f̂ (zk,S, x
(i)
−S)− f̂ (zk−1,S, x

(i)
−S)
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2-D ILLUSTRATION
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Estimate local effect of xS within each interval by averaging all observation-wise
finite differences =̂ Approximation of inner integral that integrates over local
effects w.r.t. P(x−S|zS).

Sum up local effects of all intervals up to point of interest =̂ Estimates outer
integral
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ALE ESTIMATION: FORMULA

Estimated uncentered first order ALE ˆ̃fS,ALE(x) at point x :

ˆ̃fS,ALE(x) =
kS(x)∑
k=1

1
nS(k)

∑
i: x(i)

S ∈ ]zk−1,S ,zk,S ]

[
f̂ (zk,S, x

(i)
−S)− f̂ (zk−1,S, x

(i)
−S)
]

kS(x) denotes the interval index a feature value x ∈ xS falls in

nS(k) denotes the number of observations inside the k -th interval of xS

Subtract average of estimated uncentered ALE to obtain centered ALE estimate:

f̂S,ALE(x) =
ˆ̃fS,ALE(x)−

1
n

n∑
i=1

ˆ̃fS,ALE(x
(i)
S )
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ALE ESTIMATION: ALGORITHM

1 Create K intervals for value range of xS

2 Repeat for each interval:

Replace observation’s feature value x (i)
S with upper/lower interval bound

for each observation inside k -th interval
Compute observation-wise finite difference inside k -th interval and
average them to estimate interval-wise local effects

3 Accumulate interval-wise local effects up to value of interest x to estimate
uncentered ALE and then center it
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BIKE SHARING DATASET: FIRST ORDER ALE
Shape of PD plot (left) often looks similar to (centered) first order ALE plot (right) but
on different y -axis scale. In case of correlated features, ALE might be better due to
PD’s extrapolation issue.
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BIKE SHARING DATASET: SECOND ORDER ALE
Unlike bivariate PD plots, 2nd-order ALE plots only estimate pure interaction between
two features (1st-order effects are not included).
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PD VS. ALE
PD:

fS,PD(xS) = Ex−S

(
f̂ (xS, x−S)

)
ALE:

fS,ALE(x) =
∫ x

z0

Ex−S |xS

(
∂ f̂ (xS, x−S)

∂xS

∣∣∣∣xS = zS

)
dzS − const

Recall: PD directly averages predictions over marginal distribution of x−S

Difference 1: ALE averages the

change of predictions (via partial derivatives approximated by finite
differences)
over conditional distribution P(x−S|xS = zS)

Difference 3: ALE is centered so that ExS (fS,ALE(x)) = 0
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