Interpretable Machine Learning

Accumulated Local Effect (ALE): Introduction

Learning goals

- PD plots and its extrapolation issue
- \bullet M plots and its omitted-variable bias
- \bullet Understand ALE plots

MOTIVATION - CORRELATED FEATURES

- PD plots **average over predictions** of artificial points that are out of distribution/ unlikely (red)
	- \Rightarrow Can lead to misleading / biased interpretations, especially if model also contains interactions
- Not wanted if interest is to interpret effects within data distribution

MOTIVATION - CORRELATED FEATURES

Example: Fit a NN to 5000 simulated data points with $x \sim Unif(0, 1), \epsilon \sim N(0, 0.2)$ and

 $y = x_1 + x_2^2 + \epsilon$, where $x_1 = x + \epsilon_1$, $x_2 = x + \epsilon_2$ and ϵ_1 , $\epsilon_2 \sim N(0, 0.05)$.

- Test error (MSE) of NN is comparable to other models
- NN contains interactions (see complex pred. surface)

MOTIVATION - CORRELATED FEATURES

Example: Fit a NN to 5000 simulated data points with $x \sim Unif(0, 1)$, $\epsilon \sim N(0, 0.2)$ and

 $y = x_1 + x_2^2 + \epsilon$, where $x_1 = x + \epsilon_1$, $x_2 = x + \epsilon_2$ and ϵ_1 , $\epsilon_2 \sim N(0, 0.05)$.

- Test error (MSE) of NN is comparable to other models
- NN contains interactions (see complex pred. surface)
- ALE in line with ground truth
- PDP does not reflect ground truth effects of DGP well \Rightarrow Due to interactions and averaging of points outside data distribution

a) PD plot
$$
\mathbb{E}_{\mathbf{x}_2}(\hat{f}(x_1, \mathbf{x}_2))
$$
 is estimated by $\hat{f}_{1,PD}(x_1) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_1, \mathbf{x}_2^{(i)})$

M PLOT VS. PD PLOT

- **a)** PD plot $\mathbb{E}_{\mathbf{x}_2} \left(\hat{f}(x_1, \mathbf{x}_2) \right)$ is estimated by $\hat{f}_{1,PD}(x_1) = \frac{1}{n} \sum_{i=1}^{n}$ $\sum_{i=1}^{n} \hat{f}(x_1, \mathbf{x}_2^{(i)})$
- **b)** M plot $\mathbb{E}_{\mathbf{x}_2|\mathbf{x}_1}(\hat{f}(x_1, \mathbf{x}_2)|\mathbf{x}_1)$ is estimated by $\hat{f}_{1,M}(x_1) = \frac{1}{|N(x_1)|} \sum_{i \in N(x_1)} \hat{f}(x_1, \mathbf{x}_2^{(i)}),$ where index set $N(x_1) = \{i : x_1^{(i)} \in [x_1 - \epsilon, x_1 + \epsilon]\}$ refers to observations with feature value close to x_1 .

M PLOT VS. PD PLOT

- \bullet M plots average predictions over conditional distribution (e.g., $\mathbb{P}(\mathbf{x}_2|\mathbf{x}_1)$)
	- \Rightarrow Averaging predictions close to data distribution avoid extrapolation issues
- **But:** M plots suffer from omitted-variable bias (OVB)
	- They contain effects of other dependent features
	- Useless in assessing a feature's marginal effect if feature dependencies are present

M PLOT VS. PD PLOT - OVB EXAMPLE

Method $-$ function $f(x) = -x$ $-$ M-plot $-$ PD plot

Illustration: Fit LM on 500 i.i.d. observations with features $x_1, x_2 \sim N(0, 1)$, $Cor(x_1, x_2) = 0.9$ and

$$
y=-x_1+2\cdot x_2+\epsilon,\ \epsilon\sim N(0,1).
$$

Results: M plot of x_1 also includes marginal effect of all other dependent features (here: x_2)

Interpretable Machine Learning – 5 / 6

Idea: To remove unwanted effects of other features, take partial derivatives (local effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them w.r.t. the same feature

- ⇒ Computing the partial derivative of \hat{f} w.r.t. \mathbf{x}_i removes other main effects
- \Rightarrow Integrating again w.r.t. \mathbf{x}_i recovers the original main effect of \mathbf{x}_i

Idea: To remove unwanted effects of other features, take partial derivatives (local effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them w.r.t. the same feature

- ⇒ Computing the partial derivative of \hat{f} w.r.t. \mathbf{x}_i removes other main effects
- \Rightarrow Integrating again w.r.t. \mathbf{x}_i recovers the original main effect of \mathbf{x}_i

Example:

Consider an additive prediction function:

$$
\hat{f}(x_1,x_2)=2x_1+2x_2-4x_1x_2
$$

Idea: To remove unwanted effects of other features, take partial derivatives (local effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them w.r.t. the same feature

- ⇒ Computing the partial derivative of \hat{f} w.r.t. \mathbf{x}_i removes other main effects
- \Rightarrow Integrating again w.r.t. \mathbf{x}_i recovers the original main effect of \mathbf{x}_i

Example:

Consider an additive prediction function:

$$
\hat{f}(x_1,x_2)=2x_1+2x_2-4x_1x_2
$$

Partial derivative of \hat{f} w.r.t. $x_1: \frac{\partial \hat{f}(x_1, x_2)}{\partial x_1}$ $\frac{(x_1, x_2)}{\partial x_1} = 2 - 4x_2$

Idea: To remove unwanted effects of other features, take partial derivatives (local effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them w.r.t. the same feature

- Computing the partial derivative of \hat{f} w.r.t. \mathbf{x}_i removes other main effects
- \Rightarrow Integrating again w.r.t. \mathbf{x}_i recovers the original main effect of \mathbf{x}_i

Example:

Consider an additive prediction function:

$$
\hat{f}(x_1,x_2)=2x_1+2x_2-4x_1x_2
$$

- Partial derivative of \hat{f} w.r.t. $x_1: \frac{\partial \hat{f}(x_1, x_2)}{\partial x_1}$ $\frac{(x_1, x_2)}{\partial x_1} = 2 - 4x_2$
- \bullet Integral of partial derivative $(z_0 = \min(x_1))$:

$$
\int_{z_0}^x \frac{\partial \hat{f}(x_1, x_2)}{\partial x_1} dx_1 = [2x_1 - 4x_1x_2]_{z_0}^x
$$

Idea: To remove unwanted effects of other features, take partial derivatives (local effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them w.r.t. the same feature

- ⇒ Computing the partial derivative of ˆ*f* w.r.t. **x***^j* removes other main effects
- \Rightarrow Integrating again w.r.t. \mathbf{x}_i recovers the original main effect of \mathbf{x}_i

Example:

Consider an additive prediction function:

$$
\hat{f}(x_1,x_2)=2x_1+2x_2-4x_1x_2
$$

- Partial derivative of \hat{f} w.r.t. $x_1: \frac{\partial \hat{f}(x_1, x_2)}{\partial x_1}$ $\frac{(x_1, x_2)}{\partial x_1} = 2 - 4x_2$
- \bullet Integral of partial derivative $(z_0 = \min(x_1))$:

$$
\int_{z_0}^x \frac{\partial \hat{f}(x_1, x_2)}{\partial x_1} dx_1 = [2x_1 - 4x_1x_2]_{z_0}^x
$$

 \bullet We removed the main effect of x_2 , which was our goal

