
Interpretable Machine Learning

Accumulated Local Effect (ALE): Introduction

ALE plot at X1 = 0 averages and

accumulates the local effect δ f(x1 X2)
δ x1

 over

the conditional distribution of X2 | X1 = x1

conditional distribution of X2 | X1 = 0

−10

−5

0

5

10

−5.0 −2.5 0.0 2.5 5.0
X1

X
2

Learning goals

PD plots and its extrapolation issue

M plots and its omitted-variable bias

Understand ALE plots



MOTIVATION - CORRELATED FEATURES
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artificial (grid points)

observed data points

PD plot at X1 averages f(X1, X2)

over the marginal

distribution of X2

marginal distribution of X2
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PD plots average over predictions of artificial points that are out of distribution/
unlikely (red)
⇒ Can lead to misleading / biased interpretations, especially if model also
contains interactions

Not wanted if interest is to interpret effects within data distribution
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MOTIVATION - CORRELATED FEATURES
Example: Fit a NN to 5000 simulated data points with x ∼ Unif (0, 1), ϵ ∼ N(0, 0.2)
and

y = x1 + x2
2 + ϵ, where x1 = x + ϵ1, x2 = x + ϵ2 and ϵ1, ϵ2 ∼ N(0, 0.05).

Test error (MSE) of NN
is comparable to other
models

NN contains interactions
(see complex pred.
surface)

ALE in line with ground
truth

PDP does not reflect
ground truth effects of
DGP well
⇒ Due to interactions
and averaging of points
outside data distribution
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M PLOT VS. PD PLOT
a) PD plot

PD plot at X1 averages f(X1, X2)

over the marginal

distribution of X2

marginal distribution of X2
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b) M plot

M plot averages f(x1, X2)

over the conditional
distribution of X2 | X1 = x1

conditional distribution of X2 | X1 =0
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a) PD plot Ex2

(
f̂ (x1, x2)

)
is estimated by f̂1,PD(x1) =

1
n

n∑
i=1

f̂ (x1, x
(i)
2 )

b) M plot Ex2|x1

(
f̂ (x1, x2)

∣∣∣x1

)
is estimated by f̂1,M(x1) =

1
|N(x1)|

∑
i∈N(x1)

f̂ (x1, x
(i)
2 ),

where index set N(x1) = {i : x (i)
1 ∈ [x1 − ϵ, x1 + ϵ]} refers to observations with

feature value close to x1.
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b) M plot

M plot averages f(x1, X2)

over the conditional
distribution of X2 | X1 = x1

conditional distribution of X2 | X1 =0
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M PLOT VS. PD PLOT
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M plot averages f(x1, X2)

over the conditional
distribution of X2 | X1 = x1

conditional distribution of X2 | X1 =0
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M plots average predictions over conditional distribution (e.g., P(x2|x1))
⇒ Averaging predictions close to data distribution avoid extrapolation issues

But: M plots suffer from omitted-variable bias (OVB)

They contain effects of other dependent features
Useless in assessing a feature’s marginal effect if feature dependencies
are present
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M PLOT VS. PD PLOT - OVB EXAMPLE

Cor(x1, x2) = 0.9
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Method function f(x) = −x M−plot PD plot

Illustration: Fit LM on 500 i.i.d. observations with features x1, x2 ∼ N(0, 1),
Cor(x1, x2) = 0.9 and

y = −x1 + 2 · x2 + ϵ, ϵ ∼ N(0, 1).

Results: M plot of x1 also includes marginal effect of all other dependent features
(here: x2)

Interpretable Machine Learning – 5 / 6



IDEA: INTEGRATING PARTIAL DERIVATIVES
Idea: To remove unwanted effects of other features, take partial derivatives (local
effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them
w.r.t. the same feature

⇒ Computing the partial derivative of f̂ w.r.t. xj removes other main effects

⇒ Integrating again w.r.t. xj recovers the original main effect of xj

Example:

Consider an additive prediction function:

f̂ (x1, x2) = 2x1 + 2x2 − 4x1x2

Partial derivative of f̂ w.r.t. x1: ∂ f̂ (x1,x2)
∂x1

= 2 − 4x2

Integral of partial derivative (z0 = min(x1)):∫ x

z0

∂ f̂ (x1, x2)

∂x1
dx1 = [2x1 − 4x1x2]

x
z0

We removed the main effect of x2, which was our goal

Interpretable Machine Learning – 6 / 6



IDEA: INTEGRATING PARTIAL DERIVATIVES
Idea: To remove unwanted effects of other features, take partial derivatives (local
effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them
w.r.t. the same feature

⇒ Computing the partial derivative of f̂ w.r.t. xj removes other main effects

⇒ Integrating again w.r.t. xj recovers the original main effect of xj

Example:

Consider an additive prediction function:

f̂ (x1, x2) = 2x1 + 2x2 − 4x1x2

Partial derivative of f̂ w.r.t. x1: ∂ f̂ (x1,x2)
∂x1

= 2 − 4x2

Integral of partial derivative (z0 = min(x1)):∫ x

z0

∂ f̂ (x1, x2)

∂x1
dx1 = [2x1 − 4x1x2]

x
z0

We removed the main effect of x2, which was our goal

Interpretable Machine Learning – 6 / 6



IDEA: INTEGRATING PARTIAL DERIVATIVES
Idea: To remove unwanted effects of other features, take partial derivatives (local
effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them
w.r.t. the same feature

⇒ Computing the partial derivative of f̂ w.r.t. xj removes other main effects

⇒ Integrating again w.r.t. xj recovers the original main effect of xj

Example:

Consider an additive prediction function:

f̂ (x1, x2) = 2x1 + 2x2 − 4x1x2

Partial derivative of f̂ w.r.t. x1: ∂ f̂ (x1,x2)
∂x1

= 2 − 4x2

Integral of partial derivative (z0 = min(x1)):∫ x

z0

∂ f̂ (x1, x2)

∂x1
dx1 = [2x1 − 4x1x2]

x
z0

We removed the main effect of x2, which was our goal

Interpretable Machine Learning – 6 / 6



IDEA: INTEGRATING PARTIAL DERIVATIVES
Idea: To remove unwanted effects of other features, take partial derivatives (local
effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them
w.r.t. the same feature

⇒ Computing the partial derivative of f̂ w.r.t. xj removes other main effects

⇒ Integrating again w.r.t. xj recovers the original main effect of xj

Example:

Consider an additive prediction function:

f̂ (x1, x2) = 2x1 + 2x2 − 4x1x2

Partial derivative of f̂ w.r.t. x1: ∂ f̂ (x1,x2)
∂x1

= 2 − 4x2

Integral of partial derivative (z0 = min(x1)):∫ x

z0

∂ f̂ (x1, x2)

∂x1
dx1 = [2x1 − 4x1x2]

x
z0

We removed the main effect of x2, which was our goal

Interpretable Machine Learning – 6 / 6



IDEA: INTEGRATING PARTIAL DERIVATIVES
Idea: To remove unwanted effects of other features, take partial derivatives (local
effects) of prediction function w.r.t. feature of interest and integrate (accumulate) them
w.r.t. the same feature

⇒ Computing the partial derivative of f̂ w.r.t. xj removes other main effects

⇒ Integrating again w.r.t. xj recovers the original main effect of xj

Example:

Consider an additive prediction function:

f̂ (x1, x2) = 2x1 + 2x2 − 4x1x2

Partial derivative of f̂ w.r.t. x1: ∂ f̂ (x1,x2)
∂x1

= 2 − 4x2

Integral of partial derivative (z0 = min(x1)):∫ x

z0

∂ f̂ (x1, x2)

∂x1
dx1 = [2x1 − 4x1x2]

x
z0

We removed the main effect of x2, which was our goal

Interpretable Machine Learning – 6 / 6


