Interpretable Machine Learning

PDP - Comments and Extensions

Learning goals
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PD plots and relation to ICE plots

Interpretation of PDP
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°
@ Extrapolation and Interactions in PDPs
@ Centered ICE and PDP



COMMENTS ON EXTRAPOLATION

Extrapolation can cause issues in regions with few observations or if features are
correlated
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@ Example: Features x; and x, are strongly correlated
@ Black points: Observed points of the original data

@ Red: Grid points used to calculate the ICE and PD curves (several unrealistic
values)
= PD plot at x; = 0 averages predictions over the whole marginal distribution
of feature x»
= May be problematic if model behaves strange outside training distribution
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COMMENTS ON INTERACTIONS

@ PD plots: averaging of ICE curves might obfuscate heterogeneous effects and
interactions
= Ideally plot ICE curves and PD plots together to uncover this fact
= Different shapes of ICE curves suggest interaction (but do not tell with which
feature)
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COMMENTS ON INTERACTIONS - 2D PARTIAL
DEPENDENCE

2-dim PDP ICE for temp ICE for humidity
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@ Humidity and temperature interact with each other at high values (see shape

difference)
~ Shape of ICE curves at different horizontal and vertical slices varies (for high

values)
@ Low to medium humidity and high temperature = many rented bikes
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CENTERED ICE PLOT (C-ICE)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts
(are stacked)

Solution: Center ICE curves at fixed reference value x’ ~ P(xs), often x’ = min(xs)
= Easier to identify heterogenous shapes with c-ICE curves
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= Visualize fg7ce(Xs) vs. X5
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CENTERED ICE PLOT (C-ICE)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts ‘
(are stacked)

Solution: Center ICE curves at fixed reference value x’ ~ P(xs), often x’ = min(xs)
= Easier to identify heterogenous shapes with c-ICE curves

e (xs) = Fxs, xg) = 7(x',x%)
— fé ) (XS) _ 'fé’) (X/) ICE plot (hum) : Cc-ICE plot at X' = min(hum)

i ) .
= Visualize fg7ce(Xs) vs. X5
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(yellow curve: analog to PDP the
average of c-ICE curves):

On average, the number of bike
rentals at ~ 97 % humidity decreased et o
by 1000 bikes compared to a humidity

of 0 %
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CENTERED ICE PLOT (C-ICE)

For categorical features, c-ICE plots can be interpreted as in LMs due to reference
value
Interpretation:

: @ The reference category is x’ = SPRING

— @ Golden crosses: Average number of bike
i rentals if we jump from SPRING to any
other season
= Number of bike rentals drops by
: ] ] | ~ 560 in WINTER and is slightly higher
T T e in SUMMER and FALL compared to
SPRING
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