Interpretable Machine Learning

PDP - Comments and Extensions

Learning goals

- PD plots and relation to ICE plots
- Interpretation of PDP
- Extrapolation and Interactions in PDPs
- Centered ICE and PDP

COMMENTS ON EXTRAPOLATION

Extrapolation can cause issues in regions with few observations or if features are correlated

- **Example:** Features *x*₁ and *x*₂ are strongly correlated
- Black points: Observed points of the original data
- Red: Grid points used to calculate the ICE and PD curves (several unrealistic values)
 - \Rightarrow PD plot at $x_1 = 0$ averages predictions over the whole marginal distribution of feature x_2
 - \Rightarrow May be problematic if model behaves strange outside training distribution

COMMENTS ON INTERACTIONS

- PD plots: averaging of ICE curves might **obfuscate** heterogeneous effects and interactions
 - \Rightarrow Ideally plot ICE curves and PD plots together to uncover this fact
 - \Rightarrow Different shapes of ICE curves suggest interaction (but do not tell with which feature)

COMMENTS ON INTERACTIONS - 2D PARTIAL DEPENDENCE

Humidity and temperature interact with each other at high values (see shape difference)

 \rightsquigarrow Shape of ICE curves at different horizontal and vertical slices varies (for high values)

 $\bullet\,$ Low to medium humidity and high temperature \Rightarrow many rented bikes

CENTERED ICE PLOT (C-ICE) Goldstein et al. (2015)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked)

Solution: Center ICE curves at fixed reference value $x' \sim \mathbb{P}(\mathbf{x}_S)$, often $x' = \min(\mathbf{x}_S)$

 \Rightarrow Easier to identify heterogenous shapes with c-ICE curves

$$\hat{f}_{S,cICE}^{(i)}(\mathbf{x}_S) = \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)}) - \hat{f}(x', \mathbf{x}_{-S}^{(i)})$$

= $\hat{f}_S^{(i)}(\mathbf{x}_S) - \hat{f}_S^{(i)}(x')$

 \Rightarrow Visualize $\hat{f}_{S,clCE}^{(i)}(\mathbf{x}_{S}^{*})$ vs. \mathbf{x}_{S}^{*}

CENTERED ICE PLOT (C-ICE) Goldstein et al. (2015)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked)

Solution: Center ICE curves at fixed reference value $x' \sim \mathbb{P}(\mathbf{x}_S)$, often $x' = \min(\mathbf{x}_S)$ \Rightarrow Easier to identify heterogenous shapes with c-ICE curves

$$\hat{f}_{S,cICE}^{(i)}(\mathbf{x}_{S}) = \hat{f}(\mathbf{x}_{S}, \mathbf{x}_{-S}^{(i)}) - \hat{f}(x', \mathbf{x}_{-S}^{(i)})$$

= $\hat{f}_{S}^{(i)}(\mathbf{x}_{S}) - \hat{f}_{S}^{(i)}(x')$

 \Rightarrow Visualize $\hat{f}_{S,clCE}^{(i)}(\mathbf{x}_{S}^{*})$ vs. \mathbf{x}_{S}^{*}

Interpretation

(yellow curve: analog to PDP the average of c-ICE curves): On average, the number of bike rentals at \sim 97 % humidity decreased by 1000 bikes compared to a humidity of 0 %

CENTERED ICE PLOT (C-ICE)

For categorical features, c-ICE plots can be interpreted as in LMs due to reference value

Interpretation:

- The reference category is x' = SPRING
- Golden crosses: Average number of bike rentals if we jump from SPRING to any other season
 - \Rightarrow Number of bike rentals drops by \sim 560 in $\rm WINTER$ and is slightly higher
 - in SUMMER and FALL compared to SPRING

