
Interpretable Machine Learning

PDP - Comments and Extensions
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PD plots and relation to ICE plots

Interpretation of PDP

Extrapolation and Interactions in PDPs

Centered ICE and PDP



COMMENTS ON EXTRAPOLATION
Extrapolation can cause issues in regions with few observations or if features are
correlated
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Example: Features x1 and x2 are strongly correlated

Black points: Observed points of the original data

Red: Grid points used to calculate the ICE and PD curves (several unrealistic
values)
⇒ PD plot at x1 = 0 averages predictions over the whole marginal distribution
of feature x2

⇒ May be problematic if model behaves strange outside training distribution
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COMMENTS ON INTERACTIONS

PD plots: averaging of ICE curves might obfuscate heterogeneous effects and
interactions
⇒ Ideally plot ICE curves and PD plots together to uncover this fact
⇒ Different shapes of ICE curves suggest interaction (but do not tell with which
feature)
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COMMENTS ON INTERACTIONS - 2D PARTIAL
DEPENDENCE
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Humidity and temperature interact with each other at high values (see shape
difference)
⇝ Shape of ICE curves at different horizontal and vertical slices varies (for high
values)

Low to medium humidity and high temperature ⇒ many rented bikes
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CENTERED ICE PLOT (C-ICE) Goldstein et al. (2015)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts
(are stacked)
Solution: Center ICE curves at fixed reference value x ′ ∼ P(xS), often x ′ = min(xS)
⇒ Easier to identify heterogenous shapes with c-ICE curves

f̂ (i)S,cICE(xS) = f̂ (xS, x
(i)
−S)− f̂ (x ′, x(i)

−S)

= f̂ (i)S (xS)− f̂ (i)S (x ′)

⇒ Visualize f̂ (i)S,cICE(x
∗
S) vs. x∗

S

Interpretation
(yellow curve: analog to PDP the
average of c-ICE curves):
On average, the number of bike
rentals at ∼ 97 % humidity decreased
by 1000 bikes compared to a humidity
of 0 %
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CENTERED ICE PLOT (C-ICE)

For categorical features, c-ICE plots can be interpreted as in LMs due to reference
value
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Interpretation:

The reference category is x ′ = SPRING

Golden crosses: Average number of bike
rentals if we jump from SPRING to any
other season
⇒ Number of bike rentals drops by
∼ 560 in WINTER and is slightly higher
in SUMMER and FALL compared to
SPRING
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