Interpretable Machine Learning

Partial Dependence (PD) plot

Learning goals

@ PD plots and relation to ICE plots
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Interpretation of PDP
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@ Extrapolation and Interactions in PDPs
@ Centered ICE and PDP



PARTIAL DEPENDENCE (PD)

Definition: PD function is expectation of
f(xs, X_g) w.r.t. marginal distribution of
features x_gs:

fs.pp(xs) = Ex_g G(Xsyxfs))

= /OO ?(Xs,X_s) dIP(X—S)
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Estimation: For a grid value x5, average ICE
curves point-wise at x3 over all observed x(’)
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marginal distribution of x_s,

PD plot at xs averages f(xs, X_s)
over the marginal

distribution of x-
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https://www.jstor.org/stable/2699986

PARTIAL DEPENDENCE

T Xg | X, [ X5 || f
114704 14
2[115]8][06]
s[5 9][0.1]\ 08
i xS X, x3 f \\\ %ELI 06132
11214706 1% (0.4 +0.6+0.1) o
2(2[5[8][0.8 (0.6 + 0.8 +0.5) o4 lizt
3[2]69][05 V(0.7 +09+06) 8
i|Xs| %, | X, || f °'2A|:.3
134707 .
2[3]5]8][09 ‘ ‘ !
3[3]6]9][06 1 2 B
X1
Estimate PD function by point-wise average of ICE curves at grid value

heo(xq) = 1300, FOxg x$h)
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PARTIAL DEPENDENCE
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Estimate

Feo() = 1300, Fog xs)

Interpretable Machine Learning — 2/5



PARTIAL DEPENDENCE
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EXAMPLE: PD FOR LINEAR MODEL

Assume a linear regression model with two features:

?(X) = ?(X1 s Xg) = é1x1 + ég)(g + é\o
PD function for feature of interest S = {1} (with —S = {2}) is:

o0

fr.eo(X1) = Ey, (?(x1,x2)) = / (9A1x1 + Ooxo + 90) dP(xz)

— 00

= §1X1 + éz : / X2 dP(x2) + 90

= é1X1 + é2 -y, (x2) + éo
| —1

:=const

= PD plot visualizes the function f; pp(x1) = @1x1 + const (= feature effect of x1).
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INTERPRETATION: PD AND ICE

If feature varies:
@ ICE: How does prediction of individual observation change? =- local
interpretation
@ PD: How does average effect / expected prediction change? =- global
interpretation

8000

6000

4000

2000
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INTERPRETATION: PD AND ICE

If feature varies:
@ ICE: How does prediction of individual observation change? =- local
interpretation
@ PD: How does average effect / expected prediction change? =- global
interpretation
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Insights from bike sharing data:

@ Parallel ICE curves =
homogeneous effect

6000

4000
@ Warmer = more rented bikes

2000

Predicted number of bike rentals

@ Too hot = slightly less bikes
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INTERPRETATION: CATEGORICAL FEATURES

PD plot for a categorical feature ICE plot for a categorical feature
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@ PDP with boxplots and ICE with parallel coordinates plots
@ NB: Categories can be unordered, if so, rather compare pairwise
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