Interpretable Machine Learning

Individual Conditional Expectation (ICE) Plot

g et e e s e Learning goals

E é EN R & @ ICE curves as local effect method

T ¢ T 7 ehdeded @ How to sample grid points for ICE curves




MOTIVATION

Question: How does changing values of a single feature of an observation affect
model prediction?

Idea: Change values of observation and feature of interest, and visualize how
prediction changes

Example: Prediction surface of a model (left), select observation and visualize
changes in prediction for different values of x» while keeping x; fixed
= local interpretation
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INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

Partition each observation x into xs (feature(s) of interest) and x_g
(remaining features)

s Xs ~+ In practice, Xg consists of one or two features
EAEAE (e, |S| <2and —S = SP).
111]a]7
2021518 Formal definition of ICE curves:
3131619 - ) ©
@ Choose grid points X3 = x5 *,...,Xg tovary Xs

K A(] g9
@ Plot point pairs {(xg( ), fé',),CE(xg(k))) }k—1
where ?g)ICE(Xg) = ?(ng X(—i)s)
@ For each k connect point pairs to obtain ICE curve
~ |ICE curves visualize how prediction of j-th observation changes

after varying its feature values indexed by S using grid points xg
while keeping all values in —S fixed
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ICE CURVES - ILLUSTRATION
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1. Step - Grid points:

Sample grid values x’g(”, .. ,xg(g) along feature of interest xg and replace vector x(!)
in data with grid

= Creates new artificial points for i-th observation (here: x§ = x;* € {1, 2,3} scalar)

Interpretable Machine Learning — 3/7



ICE CURVES - ILLUSTRATION
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2. Step - Predict and visualize:

For each artificially created data point of i-th observation, plot prediction ?éf),c,_:(xg) vs.
grid values xg:

100 (x) = 10, x5%) vs. x; € {1,2,3}
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ICE CURVES - ILLUSTRATION
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2. Step - Predict and visualize:

For each artificially created data point of i-th observation, plot prediction ?éf),c,_:(xg) vs.
grid values xg:

100 (x) = 10, x5%) vs. x; € {1,2,3}
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ICE CURVES - ILLUSTRATION
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2. Step - Predict and visualize:

For each artificially created data point of i-th observation, plot prediction ?éf),c,_:(xg) vs.
grid values xg:

100 (x) = 10, x5%) vs. x; € {1,2,3}
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ICE CURVES - ILLUSTRATION
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3. Step - Repeat for other observations:
ICE curve for i = 2 connects all predictions at grid values associated to i-th
observation.
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ICE CURVES - ILLUSTRATION
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3. Step - Repeat for other observations:
ICE curve for i = 3 connects all predictions at grid values associated to i-th
observation.
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ICE CURVES - INTERPRETATION

Example: Prediction surface of a model (left), select observation and visualize
changes in prediction for different values of x, while keeping x; fixed

= local interpretation
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COMMENTS ON GRID VALUES

@ Plotting ICE curves involves generating grid values Xj; visualized on x-axis
@ Common choices for grid values are

e equidistant grid values within feature range

e randomly sampled values or quantile values of observed feature values

@ Except equidistant grid, the other two options preserve (approximately) the
marginal distribution of feature of interest

Grid points for Xs (red) for highlighted observation (blue)

equidistant grid randomly sampled grid quantile grid
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COMMENTS ON GRID VALUES

@ Plotting ICE curves involves generating grid values Xj; visualized on x-axis
@ Common choices for grid values are

e equidistant grid values within feature range

e randomly sampled values or quantile values of observed feature values

@ Except equidistant grid, the other two options preserve (approximately) the
marginal distribution of feature of interest

@ Correlations/interactions ~~ unrealistic values in all three methods

Grid points for Xs (red) for highlighted observation (blue)

equidistant grid randomly sampled grid quantile grid
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