Interpretable Machine Learning

Introduction to Feature Effects
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FEATURE EFFECTS - GLOBAL VIEW
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LM without interaction: 9A,- is linear effect
of feature x; (applies globally to all
observations):

@ Model equation: #(x) = o + x4 6;

@ Single value 6, describes global

effect
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LM without interaction: 9A,- is linear effect
of feature x; (applies globally to all
observations):
@ Model equation: ?(x) =B + x10
@ Single value 0, describes global
effect
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GAM without interaction: £(x;) is
non-linear effect of feature x; (applies
globally):
@ Model equation: 7(x) = 8y + #(x)
@ Curve 1, describes global effect
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FEATURE EFFECTS - LOCAL VIEW

LM GAM
S S
w3 w8
[l <
cE =)
28 & S8
8 3] pra
223 208
< X
ﬁ 583 s 3
g2 £
50 o D0 o
SE 3 SE 3
=5d S5«
= £
° °
0 10 20 30 0 10 20 30
Temperature in °C Temperature in °C
season WINTER === SPRING == SUMMER FALL

@ Interactions: Feature effect is modified by other features and varies across
observations
= Effect of temperature varies across seasons
= Multiple values / curves needed to describe effect

@ ML models often model non-linear effects and complex interactions
= Need for local feature effect methods, e.g., analyze effect for individual
observations
= Analyzing global effects by aggregating local effects

Interpretable Machine Learning — 2/3



FEATURE EFFECTS

Feature effects visualize or quantify marginal contribution of a feature of interest
w.r.t. predictions

@ Similar to regression coefficients (LMs) or Splines (GAMs)

@ Different aggregation levels for feature effects exist (simplification but
information loss)

@ Methods: ICE curves (local curves)

Individual Effects (curves)
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FEATURE EFFECTS

Feature effects visualize or quantify marginal contribution of a feature of interest
w.r.t. predictions

@ Similar to regression coefficients (LMs) or Splines (GAMs)

@ Different aggregation levels for feature effects exist (simplification but
information loss)

@ Methods: ICE curves (local curves), PD and ALE plots (global curves)

Individual Effects (curves) Global Effect (curve)
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FEATURE EFFECTS

Feature effects visualize or quantify marginal contribution of a feature of interest
w.r.t. predictions
@ Similar to regression coefficients (LMs) or Splines (GAMs)
@ Different aggregation levels for feature effects exist (simplification but
information loss)
@ Methods: ICE curves (local curves), PD and ALE plots (global curves), AME
(global value)

Individual Effects (curves) Global Effect (curve) Global Effect (aggregated)
ICE plot Partial Dependence (PD) plot AME (e.g., average slope)
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