
Interpretable Machine Learning

Introduction to Feature Effects
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FEATURE EFFECTS - GLOBAL VIEW
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GAM

LM without interaction: θ̂j is linear effect
of feature xj (applies globally to all
observations):

Model equation: f̂ (x) = θ̂0 + x1θ̂1

Single value θ̂1 describes global
effect
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GAM

GAM without interaction: f̂j(xj) is
non-linear effect of feature xj (applies
globally):

Model equation: f̂ (x) = θ̂0 + f̂j(x1)

Curve f̂1 describes global effect
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LM without interaction: θ̂j is linear effect
of feature xj (applies globally to all
observations):

Model equation: f̂ (x) = θ̂0 + x1θ̂1

Single value θ̂1 describes global
effect
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GAM

GAM without interaction: f̂j(xj) is
non-linear effect of feature xj (applies
globally):

Model equation: f̂ (x) = θ̂0 + f̂j(x1)

Curve f̂1 describes global effect
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FEATURE EFFECTS - LOCAL VIEW
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season WINTER SPRING SUMMER FALL

Interactions: Feature effect is modified by other features and varies across
observations
⇒ Effect of temperature varies across seasons
⇒ Multiple values / curves needed to describe effect

ML models often model non-linear effects and complex interactions
⇒ Need for local feature effect methods, e.g., analyze effect for individual
observations
⇒ Analyzing global effects by aggregating local effects
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FEATURE EFFECTS
Feature effects visualize or quantify marginal contribution of a feature of interest
w.r.t. predictions

Similar to regression coefficients (LMs) or Splines (GAMs)

Different aggregation levels for feature effects exist (simplification but
information loss)

Methods: ICE curves (local curves)

, PD and ALE plots (global curves), AME
(global value)
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