Interpretable Machine Learning

Friedman's H-Statistic

		Over	erall interactions				2-way interactions with 'temp						
Features	windspeed temp yr holiday meth weathersit season hum workingday weekday crit		-	•	•	Fe stures	esseoniemp mothisemp yriamp holidayiamp windepeediamp weathersitiemp weathersitiemp weekdayiamp heekdayiamp humiamp catiamp	•			•	•	
		0.00	0.05 Overall in	0.10 deraction	0.15 strength			0.000	0.025 2-way ir	0.050 teraction	a.cos strength	0.100	

Learning goals

- Understand Friedman's H-statistic
- Measure 2-way interactions between pairs of features
- Measure a feature's overall interaction strength

IDEA (Friedman and Popescu (2008)

2-way interaction: If two features *j* and *k* do not interact, their mean-centered PD function is

$$\hat{f}_{jk,PD}(x_j,x_k) = \hat{f}_{j,PD}(x_j) + \hat{f}_{k,PD}(x_k)$$

- $\hat{f}_{jk,PD}(x_j, x_k)$: joint 2-dim PD function of feature *j* and *k*
- $\hat{f}_{j,PD}(x_j)$ and $\hat{f}_{k,PD}(x_k)$: 1-dim PD functions of single features *j* and *k*

IDEA

Overall interaction: If feature *j* does not interact with any other feature (denoted by index -j), the mean-centered prediction function can be decomposed by

$$\hat{f}(\mathbf{x}) = \hat{f}_{j,PD}(x_j) + \hat{f}_{-j,PD}(\mathbf{x}_{-j})$$

- $\hat{f}(\mathbf{x})$: mean-centered prediction function
- $\hat{f}_{j,PD}(x_j)$: 1-dim PD function of feature *j*
- $\hat{f}_{-j,PD}(\mathbf{x}_{-j})$: (p-1)-dim PD function of all p features except feature j

2-WAY INTERACTION STRENGTH

H-statistic measures interaction strength between feature *j* and *k* by

$$H_{jk}^{2} = \frac{\sum_{i=1}^{n} \left[\hat{f}_{jk,PD}(x_{j}^{(i)}, x_{k}^{(i)}) - \hat{f}_{j,PD}(x_{j}^{(i)}) - \hat{f}_{k,PD}(x_{k}^{(i)}) \right]^{2}}{\sum_{i=1}^{n} \left[\hat{f}_{jk,PD}(x_{j}^{(i)}, x_{k}^{(i)}) \right]^{2}}$$

Note: The numerator is 0 if the two features x_j and x_k do not interact, i.e., $\hat{f}_{jk,PD}(x_j, x_k) - \hat{f}_{j,PD}(x_j) - \hat{f}_{k,PD}(x_k) = 0.$ \Rightarrow The smaller the values of H_{ik}^2 , the weaker the interaction between x_j and x_k .

OVERALL INTERACTION STRENGTH

Similarly, it is possible to measure whether a feature *j* interacts with any other feature (Overall interaction strength):

$$H_{j}^{2} = \frac{\sum_{i=1}^{n} \left[\hat{f}(x^{(i)}) - \hat{f}_{j,PD}(x_{j}^{(i)}) - \hat{f}_{-j,PD}(x_{-j}^{(i)}) \right]^{2}}{\sum_{i=1}^{n} \left[\hat{f}(x^{(i)}) \right]^{2}}$$

Example: Inspect interactions of a random forest for the bike data

