Interpretable Machine Learning

Additive Decomposition

' ~ Learning goals
@ What are additive decomposition of prediction
' functions?
' @ Why are they useful?

@ How do we obtain them?




FUNCTIONAL DECOMPOSITION

For interpretation purposes, one might be interested in decomposing a
square-integrable function f : RP — R into sum of components of different
dimensions w.r.t. inputs Xy, ..., X,:

f(x) = Doscii,..pr 9s(Xs) = g + 91(x1) + 2(x2) + - - + go(Xp)+

G12(x1, %) + -+ Go—1,p(Xp—1, Xp) + -

g17”_7p(X1 yee e ,Xp)

where
@ gp= Constant mean (intercept)
@ g/= first-order or main effect of j-th feature alone on 7(x)
@ gs(xs)= |S|-order effect, depends only on features in S

N.B.: A unique solution for the components only exists under certain assumptions
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FUNCTIONAL DECOMPOSITION — ASSUMPTIONS

For independent inputs, the vanishing condition is required to obtain a unique
solution:

Ex(05(x5)) = [ s(xs)dP(x) = 0.% € S.¥S C {1,....p)
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FUNCTIONAL DECOMPOSITION — ASSUMPTIONS

For independent inputs, the vanishing condition is required to obtain a unique
solution:

Ex(05(x5)) = [ s(xs)dP(x) = 0.% € S.¥S C {1,....p)

Vanishing condition has the following implications:
@ Marginalizing out x;, Vj € S for component gs(xs) yields a constant 0
~ Makes sure that component gs(xs) does not contain effects of x;, Vj € S
@ Components are orthogonal (i.e., mutually independent and uncorrelated):

Ex(gv(xv)gs(xs)) = 0,VV # S

@ Variance can be decomposed: Var[f(x)] = Yosci,..pp Var[gs(xs)]
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FUNCTIONAL DECOMPOSITION — ASSUMPTIONS

For independent inputs, the vanishing condition is required to obtain a unique
solution:

Ex(05(x5)) = [ s(xs)dP(x) = 0.% € S.¥S C {1,....p)

Vanishing condition has the following implications:
@ Marginalizing out x;, Vj € S for component gs(xs) yields a constant 0
~ Makes sure that component gs(xs) does not contain effects of x;, Vj € S
@ Components are orthogonal (i.e., mutually independent and uncorrelated):

Ex(gv(xv)gs(xs)) = 0,VV # S
@ Variance can be decomposed: Var[?(x)] = ZSQ{MM?} Var [gs(xs)]

N.B.: For dependent inputs, showed the existence of a unique solution
for the components under a “relaxed vanishing condition” which leads to a
“hierarchical orthogonality”

Ex(gv(xv)gs(xs)) =0,V C S

~» Only components are orthogonal where features involved in gy(xy) also appear in
gs(xs)
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FUNCTIONAL DECOMPOSITION — EXAMPLE

Example: 7(x) =24+ x% — x2 + X - Xz (€., if y = 5and x, = 10 = f(x) = —23)
@ Computation of components using feature values

X1 = x2 = (—10,-9,...,10)" gives:
For x;, = 5 and

x> = 10:
°gp=2

° gi(x1) =
RS= —9.67

(%) =
i —65.33
Z—— ° gia(xi, xe) =
o ’ T e T e T " 50
= f(x) = —23

16) = o + 0a(x1) * 92(x2) + 91200, x2) g constant mean g, main effect of X;

7,
|

s o= g
go=2 S -

g, main effect of X, g1 interaction between X, and X,
o-

N =
|

N7
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FUNCTIONAL DECOMPOSITION — EXAMPLE

Example: 7(x) =24+ x% — x2 + X - Xz (€., if y = 5and x, = 10 = f(x) = —23)
@ Computation of components using feature values

X1 = x2 = (—10,-9,...,10)" gives:
For x;, = 5 and

x> = 10:

?(x) = g0 + 91(%:) + G2(x2) + 1 2(x0, X2) go constant mean g, main effect of X,

o
2o w0 e gp =2
. ( 50 eme)l)/ ° g1(x1) =
1os0-4, T S A —9.67
=N
§
=
i

P

—65.33

° Q1,2(X1,X2) =
50

= f(x)=-23

55 o 5
Feature x; (or xz)

g, main effect of X, 1.2 interaction between X; and X, ( ) _
s 9 =
go(X2
/ > 20

-io s o s 0
x1 Feature x;

N\

@ Vanishing condition means:
e g1 and g» are mean-centered w.r.t. marginal distribution of x; and x»
o Integral of gy » over marginal distribution x; (or x;) is 0
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FUNCTIONAL DECOMPOSITION — COMPUTATION

Computation of components via recursive expectations (where —S = {1,...,p}\ S):

gs(xs) = Ex [ (x) | Xs} Z gv(xv)
vcs
@ Expectation integrates f(x) over all input features except xs

@ Subtract all components gy with V C S to remove all lower-order effects and
center the effect
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FUNCTIONAL DECOMPOSITION — COMPUTATION

Computation of components via recursive expectations (where —S = {1,...,p}\ S):

gs(xs) = Ex_ [ (x) | Xs} > av(xv)

vcs

@ Expectation integrates f(x) over all input features except xs

@ Subtract all components gy with V C S to remove all lower-order effects and
center the effect

@ Recursive computation:
o = Ex [(x)]

Gk (X %) = Ex_; P(X) | X/axk] = gk(x) — gi(%) — go, Vi < k
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VARIANCE DECOMPOSITION

@ Decomposition of ?(x) allows to conduct functional analysis of variance
(fANOVA)

@
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VARIANCE DECOMPOSITION

@ Decomposition of ?(x) allows to conduct functional analysis of variance
(FANOVA)

@ If features are independent, variance can be additively decomposed without
covariances:

Var [?(x)] =Var[go+g1(x)+ .. + G203 %)+ .. +0r.p)]

Var [gy] + Var [g1(x1)] + ... + Var[gi2(x1, %)+ ... + Var[gi,. p(x)]
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VARIANCE DECOMPOSITION

@ Decomposition of ?(x) allows to conduct functional analysis of variance
(FANOVA)

@ If features are independent, variance can be additively decomposed without
covariances:

Var [?(x)] = Var[gg+gi(x) + ... + G20, %)+ .. +ai..p(X)]
Var [gy] + Var [g1(x1)] + ... + Var[gi2(x1, %)+ ... + Var[gi,. p(x)]

@ Dividing by the prediction variance, yields fraction of variance explained by each
term:

Varlgll |, Verlou(x)l |, Varlgua(xi)l |, Varlgn,..o(x)
Var [?(x)} Var [?(x)} o Var [?(x)} . Var [?(x)}

1:
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VARIANCE DECOMPOSITION

@ Decomposition of ?(x) allows to conduct functional analysis of variance
(FANOVA)

@ If features are independent, variance can be additively decomposed without
covariances:

Var [?(x)] = Var[gg+gi(x) + ... + G20, %)+ .. +ai..p(X)]
Var [gy] + Var [g1(x1)] + ... + Var[gi2(x1, %)+ ... + Var[gi,. p(x)]

@ Dividing by the prediction variance, yields fraction of variance explained by each
term:

_ Ve (9] i Var [g1(x1)] " 4 Var [g1 2(x1, %) 4 Var [gi,...p(X)]
Var [?(x)} Var [?(x)} o Var [?(x)} . Var [?(x)}

@ Fraction of variance explained by a component gy (xy) is the Sobol index:
S, = Var[gv(xv)]
V= Var[?(x)]
~ Importance measure of component gy (xy)
~» Small Sy values = Component gy does not explain much of total variance

of f
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