Interpretable Machine Learning

Additive Decomposition

Learning goals

- What are additive decomposition of prediction functions?
- Why are they useful?
- How do we obtain them?

FUNCTIONAL DECOMPOSITION • Li and Rabitz (2011)

Chastaing et al. (2012)

For interpretation purposes, one might be interested in decomposing a square-integrable function $\hat{f} : \mathbb{R}^{p} \mapsto \mathbb{R}$ into sum of components of different dimensions w.r.t. inputs x_{1}, \ldots, x_{p} :

$$\hat{f}(\mathbf{x}) = \sum_{S \subseteq \{1,...,p\}} g_S(\mathbf{x}_S) = g_{\emptyset} + g_1(x_1) + g_2(x_2) + \dots + g_p(x_p) + g_{1,2}(x_1, x_2) + \dots + g_{p-1,p}(x_{p-1}, x_p) + \dots + g_{1,...,p}(x_1, \dots, x_p)$$

where

- $g_{\emptyset} = \text{Constant mean (intercept)}$
- $g_j = \text{ first-order or main effect of } j\text{-th feature alone on } \hat{f}(\mathbf{x})$
- $g_S(\mathbf{x}_S) = |S|$ -order effect, depends **only** on features in *S*
- N.B.: A unique solution for the components only exists under certain assumptions

FUNCTIONAL DECOMPOSITION – ASSUMPTIONS

For independent inputs, the *vanishing condition* is required to obtain a unique solution:

$$\mathbb{E}_{X_j}(g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}})) = \int g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) d\mathbb{P}(x_j) = 0, orall j \in \mathcal{S}, orall S \subseteq \{1, \dots, p\}$$

FUNCTIONAL DECOMPOSITION – ASSUMPTIONS

For independent inputs, the *vanishing condition* is required to obtain a unique solution:

$$\mathbb{E}_{X_j}(g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}})) = \int g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) d\mathbb{P}(x_j) = 0, \forall j \in \mathcal{S}, \forall \mathcal{S} \subseteq \{1, \dots, p\}$$

Vanishing condition has the following implications:

- Marginalizing out x_j, ∀j ∈ S for component g_S(**x**_S) yields a constant 0
 → Makes sure that component g_S(**x**_S) does not contain effects of x_j, ∀j ∈ S
- Components are orthogonal (i.e., mutually independent and uncorrelated):

$$\mathbb{E}_X(g_V(\mathbf{x}_V)g_S(\mathbf{x}_S))=0, orall V
eq S$$

• Variance can be decomposed: $Var[\hat{f}(\mathbf{x})] = \sum_{S \subseteq \{1,...,p\}} Var[g_S(\mathbf{x}_S)]$

FUNCTIONAL DECOMPOSITION – ASSUMPTIONS

For independent inputs, the *vanishing condition* is required to obtain a unique solution:

$$\mathbb{E}_{X_j}(g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}})) = \int g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) d\mathbb{P}(x_j) = 0, \forall j \in \mathcal{S}, \forall \mathcal{S} \subseteq \{1, \dots, p\}$$

Vanishing condition has the following implications:

- Marginalizing out x_j, ∀j ∈ S for component g_S(**x**_S) yields a constant 0
 → Makes sure that component g_S(**x**_S) does not contain effects of x_j, ∀j ∈ S
- Components are orthogonal (i.e., mutually independent and uncorrelated):

 $\mathbb{E}_X(g_V(\mathbf{x}_V)g_S(\mathbf{x}_S))=0, \forall V
eq S$

• Variance can be decomposed: $Var[\hat{f}(\mathbf{x})] = \sum_{S \subseteq \{1,...,p\}} Var[g_S(\mathbf{x}_S)]$

N.B.: For dependent inputs, <u>Hooker (2007)</u> showed the existence of a unique solution for the components under a "relaxed vanishing condition" which leads to a "hierarchical orthogonality"

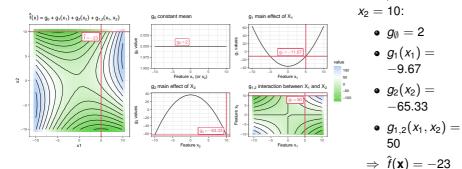
$$\mathbb{E}_X(g_V({f x}_V)g_S({f x}_S))=0, orall V\subset S$$

 \sim Only components are orthogonal where features involved in $g_V(\mathbf{x}_V)$ also appear in $g_S(\mathbf{x}_S)$

FUNCTIONAL DECOMPOSITION – EXAMPLE

Example: $\hat{f}(\mathbf{x}) = 2 + x_1^2 - x_2^2 + x_1 \cdot x_2$ (e.g., if $x_1 = 5$ and $x_2 = 10 \Rightarrow \hat{f}(\mathbf{x}) = -23$)

• Computation of components using feature values $x_1 = x_2 = (-10, -9, ..., 10)^{\top}$ gives:

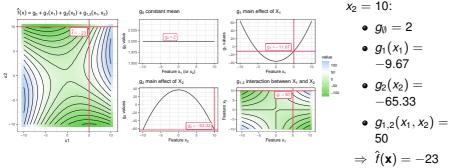


For $x_1 = 5$ and

FUNCTIONAL DECOMPOSITION – EXAMPLE

Example: $\hat{f}(\mathbf{x}) = 2 + x_1^2 - x_2^2 + x_1 \cdot x_2$ (e.g., if $x_1 = 5$ and $x_2 = 10 \Rightarrow \hat{f}(\mathbf{x}) = -23$)

• Computation of components using feature values $x_1 = x_2 = (-10, -9, ..., 10)^{\top}$ gives:



- Vanishing condition means:
 - g_1 and g_2 are mean-centered w.r.t. marginal distribution of x_1 and x_2
 - Integral of g_{1,2} over marginal distribution x₁ (or x₂) is 0

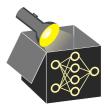
For $x_1 = 5$ and

FUNCTIONAL DECOMPOSITION – COMPUTATION

Computation of components via recursive expectations (where $-S = \{1, ..., p\} \setminus S$):

$$g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) = \mathbb{E}_{X_{-\mathcal{S}}}\left[\hat{f}(\mathbf{x}) \mid x_{\mathcal{S}}\right] - \sum_{V \subset \mathcal{S}} g_{V}(x_{V})$$

- Expectation integrates $\hat{f}(\mathbf{x})$ over all input features except \mathbf{x}_S
- Subtract all components g_V with $V \subset S$ to remove all lower-order effects and center the effect



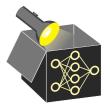
FUNCTIONAL DECOMPOSITION – COMPUTATION

Computation of components via recursive expectations (where $-S = \{1, ..., p\} \setminus S$):

$$g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) = \mathbb{E}_{X_{-\mathcal{S}}}\left[\hat{f}(\mathbf{x}) \mid x_{\mathcal{S}}\right] - \sum_{V \subset \mathcal{S}} g_{V}(x_{V})$$

- Expectation integrates $\hat{f}(\mathbf{x})$ over all input features except \mathbf{x}_S
- Subtract all components g_V with $V \subset S$ to remove all lower-order effects and center the effect
- Recursive computation:

$$\begin{split} g_{\emptyset} &= \mathbb{E}_{X} \left[\hat{f}(\mathbf{x}) \right] \\ g_{j}(x_{j}) &= \mathbb{E}_{X_{-j}} \left[\hat{f}(\mathbf{x}) \mid x_{j} \right] - g_{\emptyset}, \ \forall j \in \{1, \dots, p\} \\ g_{j,k}(x_{j}, x_{k}) &= \mathbb{E}_{X_{-\{j,k\}}} \left[\hat{f}(\mathbf{x}) \mid x_{j}, x_{k} \right] - g_{k}(x_{k}) - g_{j}(x_{j}) - g_{\emptyset}, \ \forall j < k \\ &\vdots \\ g_{1,\dots,p}(\mathbf{x}) &= \hat{f}(\mathbf{x}) - \sum_{S \subseteq \{1,\dots,p-1\}} g_{S}(\mathbf{x}_{S}) \end{split}$$



• Decomposition of $\hat{f}(\mathbf{x})$ allows to conduct functional analysis of variance (fANOVA)

- Decomposition of $\hat{f}(\mathbf{x})$ allows to conduct functional analysis of variance (fANOVA)
- If features are independent, variance can be additively decomposed without covariances:

$$Var\left[\hat{f}(\mathbf{x})\right] = Var\left[g_{\emptyset} + g_{1}(x_{1}) + \ldots + g_{1,2}(x_{1}, x_{2}) + \ldots + g_{1,\ldots,p}(\mathbf{x})\right]$$

= Var $[g_{\emptyset}] + Var\left[g_{1}(x_{1})\right] + \ldots + Var\left[g_{1,2}(x_{1}, x_{2})\right] + \ldots + Var\left[g_{1,\ldots,p}(\mathbf{x})\right]$

- Decomposition of $\hat{f}(\mathbf{x})$ allows to conduct functional analysis of variance (fANOVA)
- If features are independent, variance can be additively decomposed without covariances:

$$Var\left[\hat{f}(\mathbf{x})\right] = Var\left[g_{\emptyset} + g_{1}(x_{1}) + \dots + g_{1,2}(x_{1}, x_{2}) + \dots + g_{1,\dots,p}(\mathbf{x})\right]$$
$$= Var\left[g_{\emptyset}\right] + Var\left[g_{1}(x_{1})\right] + \dots + Var\left[g_{1,2}(x_{1}, x_{2})\right] + \dots + Var\left[g_{1,\dots,p}(\mathbf{x})\right]$$

• Dividing by the prediction variance, yields fraction of variance explained by each term:

$$1 = \frac{\operatorname{Var}\left[g_{\emptyset}\right]}{\operatorname{Var}\left[\hat{f}(\mathbf{x})\right]} + \frac{\operatorname{Var}\left[g_{1}(x_{1})\right]}{\operatorname{Var}\left[\hat{f}(\mathbf{x})\right]} + \ldots + \frac{\operatorname{Var}\left[g_{1,2}(x_{1},x_{2})\right]}{\operatorname{Var}\left[\hat{f}(\mathbf{x})\right]} + \ldots + \frac{\operatorname{Var}\left[g_{1,\ldots,p}(\mathbf{x})\right]}{\operatorname{Var}\left[\hat{f}(\mathbf{x})\right]}$$

- Decomposition of $\hat{f}(\mathbf{x})$ allows to conduct functional analysis of variance (fANOVA)
- If features are independent, variance can be additively decomposed without covariances:

$$Var\left[\hat{f}(\mathbf{x})\right] = Var\left[g_{\emptyset} + g_{1}(x_{1}) + \dots + g_{1,2}(x_{1}, x_{2}) + \dots + g_{1,\dots,p}(\mathbf{x})\right]$$
$$= Var\left[g_{\emptyset}\right] + Var\left[g_{1}(x_{1})\right] + \dots + Var\left[g_{1,2}(x_{1}, x_{2})\right] + \dots + Var\left[g_{1,\dots,p}(\mathbf{x})\right]$$

• Dividing by the prediction variance, yields fraction of variance explained by each term:

$$= \frac{\operatorname{Var}\left[g_{\emptyset}\right]}{\operatorname{Var}\left[\hat{f}(\mathbf{x})\right]} + \frac{\operatorname{Var}\left[g_{1}(x_{1})\right]}{\operatorname{Var}\left[\hat{f}(\mathbf{x})\right]} + \ldots + \frac{\operatorname{Var}\left[g_{1,2}(x_{1},x_{2})\right]}{\operatorname{Var}\left[\hat{f}(\mathbf{x})\right]} + \ldots + \frac{\operatorname{Var}\left[g_{1,\ldots,p}(\mathbf{x})\right]}{\operatorname{Var}\left[\hat{f}(\mathbf{x})\right]}$$

• Fraction of variance explained by a component $g_V(\mathbf{x}_V)$ is the Sobol index:

 $S_V = rac{Var[g_V(\mathbf{x}_V)]}{Var[\hat{f}(\mathbf{x})]}$

 \rightsquigarrow Importance measure of component $g_V(\mathbf{x}_V)$

 \rightsquigarrow Small \mathcal{S}_V values \Rightarrow Component g_V does not explain much of total variance of \hat{f}

