Interpretable Machine Learning

Additive Decomposition

Learning goals

- What are additive decomposition of prediction functions?
- Why are they useful?
- \bullet How do we obtain them?

FUNCTIONAL DECOMPOSITION [Li and Rabitz \(2011\)](https://doi.org/10.1007/s10910-011-9898-0) [Chastaing et al. \(2012\)](https://doi.org/10.1214/12-EJS749)

For interpretation purposes, one might be interested in decomposing a square-integrable function $\hat{f}:\mathbb{R}^p\mapsto\mathbb{R}$ into sum of components of different dimensions w.r.t. inputs x_1, \ldots, x_p :

$$
\hat{f}(\mathbf{x}) = \sum_{S \subseteq \{1,\dots,p\}} g_S(\mathbf{x}_S) = g_{\emptyset} + g_1(x_1) + g_2(x_2) + \dots + g_p(x_p) + g_{1,2}(x_1, x_2) + \dots + g_{p-1,p}(x_{p-1}, x_p) + \dots + g_{1,\dots,p}(x_1, \dots, x_p)
$$

where

- $g_{\emptyset} \triangleq$ Constant mean (intercept)
- $q_i \triangleq$ first-order or main effect of *j*-th feature alone on $\hat{f}(\mathbf{x})$
- $g_S(\mathbf{x}_S) \triangleq |S|$ -order effect, depends **only** on features in *S*

N.B.: A unique solution for the components only exists under certain assumptions

FUNCTIONAL DECOMPOSITION – ASSUMPTIONS

For independent inputs, the *vanishing condition* is required to obtain a unique solution:

$$
\mathbb{E}_{X_j}(g_{S}(\mathbf{x}_{S})) = \int g_{S}(\mathbf{x}_{S}) d\mathbb{P}(x_j) = 0, \forall j \in S, \forall S \subseteq \{1, \ldots, p\}
$$

FUNCTIONAL DECOMPOSITION – ASSUMPTIONS

For independent inputs, the *vanishing condition* is required to obtain a unique solution:

$$
\mathbb{E}_{X_j}(g_S(\mathbf{x}_S)) = \int g_S(\mathbf{x}_S) d\mathbb{P}(x_j) = 0, \forall j \in S, \forall S \subseteq \{1, \ldots, p\}
$$

Vanishing condition has the following implications:

- Marginalizing out $x_j, \forall j \in S$ for component $g_S(\mathbf{x}_S)$ yields a constant 0 \rightsquigarrow Makes sure that component $g_{S}(\mathbf{x}_{S})$ does not contain effects of $x_{j}, \forall j \in S$
- Components are orthogonal (i.e., mutually independent and uncorrelated):

$$
\mathbb{E}_X(g_V(\bm{x}_V)g_S(\bm{x}_S))=0, \forall V\neq S
$$

 $\textsf{Variance} \text{ can be decomposed: } \textsf{Var}[\hat{\textit{f}}(\textbf{x})] = \sum_{\mathcal{S} \subseteq \{1,...,p\}} \textsf{Var}\left[g_{\mathcal{S}}(\textbf{x}_{\mathcal{S}})\right]$

FUNCTIONAL DECOMPOSITION – ASSUMPTIONS

For independent inputs, the *vanishing condition* is required to obtain a unique solution:

$$
\mathbb{E}_{X_j}(g_S(\mathbf{x}_S)) = \int g_S(\mathbf{x}_S) d\mathbb{P}(x_j) = 0, \forall j \in S, \forall S \subseteq \{1, \ldots, p\}
$$

Vanishing condition has the following implications:

- Marginalizing out $x_j, \forall j \in S$ for component $g_S(\mathbf{x}_S)$ yields a constant 0 \rightsquigarrow Makes sure that component $g_{S}(\mathbf{x}_{S})$ does not contain effects of $x_{j}, \forall j \in S$
- Components are orthogonal (i.e., mutually independent and uncorrelated):

$$
\mathbb{E}_X(g_V(\bm{x}_V)g_S(\bm{x}_S))=0, \forall V\neq S
$$

 $\textsf{Variance} \text{ can be decomposed: } \textsf{Var}[\hat{\textit{f}}(\textbf{x})] = \sum_{\mathcal{S} \subseteq \{1,...,p\}} \textsf{Var}\left[g_{\mathcal{S}}(\textbf{x}_{\mathcal{S}})\right]$

N.B.: For dependent inputs, $($ [Hooker \(2007\)](http://www.tandfonline.com/doi/abs/10.1198/106186007X237892) showed the existence of a unique solution for the components under a "relaxed vanishing condition" which leads to a "hierarchical orthogonality"

$$
\mathbb{E}_X(g_V(\bm{x}_V)g_S(\bm{x}_S))=0, \forall V\subset S
$$

 \rightsquigarrow Only components are orthogonal where features involved in $g_V(\mathbf{x}_V)$ also appear in $g_S(\mathbf{x}_S)$

Interpretable Machine Learning – 2 / 5

FUNCTIONAL DECOMPOSITION – EXAMPLE

Example: $\hat{f}(\mathbf{x}) = 2 + x_1^2 - x_2^2 + x_1 \cdot x_2$ (e.g., if $x_1 = 5$ and $x_2 = 10 \Rightarrow \hat{f}(\mathbf{x}) = -23$)

Computation of components using feature values $x_1 = x_2 = (-10, -9, \dots, 10)^{\top}$ gives:

For $x_1 = 5$ and

FUNCTIONAL DECOMPOSITION – EXAMPLE

Example: $\hat{f}(\mathbf{x}) = 2 + x_1^2 - x_2^2 + x_1 \cdot x_2$ (e.g., if $x_1 = 5$ and $x_2 = 10 \Rightarrow \hat{f}(\mathbf{x}) = -23$)

Computation of components using feature values $x_1 = x_2 = (-10, -9, \dots, 10)^{\top}$ gives:

- Vanishing condition means:
	- g_1 and g_2 are mean-centered w.r.t. marginal distribution of x_1 and x_2
	- Integral of $g_{1,2}$ over marginal distribution x_1 (or x_2) is 0

For $x_1 = 5$ and

FUNCTIONAL DECOMPOSITION – COMPUTATION

Computation of components via recursive expectations (where $-S = \{1, \ldots, p\} \setminus S$):

$$
g_S(\mathbf{x}_S) = \mathbb{E}_{X_{-S}}\left[\hat{f}(\mathbf{x}) \mid x_S\right] - \sum_{V \subset S} g_V(x_V)
$$

- \bullet Expectation integrates $\hat{f}(\mathbf{x})$ over all input features except \mathbf{x}_S
- Subtract all components *g^V* with *V* ⊂ *S* to remove all lower-order effects and center the effect

FUNCTIONAL DECOMPOSITION – COMPUTATION

Computation of components via recursive expectations (where $-S = \{1, \ldots, p\} \setminus S$):

$$
g_S(\mathbf{x}_S) = \mathbb{E}_{X_{-S}}\left[\hat{f}(\mathbf{x}) \mid x_S\right] - \sum_{V \subset S} g_V(x_V)
$$

- \bullet Expectation integrates $\hat{f}(\mathbf{x})$ over all input features except \mathbf{x}_S
- Subtract all components *g^V* with *V* ⊂ *S* to remove all lower-order effects and center the effect
- Recursive computation:

$$
g_{\emptyset} = \mathbb{E}_X \left[\hat{f}(\mathbf{x}) \right]
$$

\n
$$
g_j(x_j) = \mathbb{E}_{X_{-j}} \left[\hat{f}(\mathbf{x}) \mid x_j \right] - g_{\emptyset}, \ \forall j \in \{1, \ldots, p\}
$$

\n
$$
g_{j,k}(x_j, x_k) = \mathbb{E}_{X_{-\{j,k\}}}\left[\hat{f}(\mathbf{x}) \mid x_j, x_k \right] - g_k(x_k) - g_j(x_j) - g_{\emptyset}, \ \forall j < k
$$

\n:
\n:
\n
$$
g_{1,\ldots,p}(\mathbf{x}) = \hat{f}(\mathbf{x}) - \sum_{S \subseteq \{1, \ldots, p-1\}} g_S(\mathbf{x}_S)
$$

 \bullet Decomposition of $\hat{f}(\mathbf{x})$ allows to conduct functional analysis of variance (fANOVA)

- \bullet Decomposition of $\hat{f}(\mathbf{x})$ allows to conduct functional analysis of variance (fANOVA)
- If features are independent, variance can be additively decomposed without covariances:

$$
Var\left[\hat{f}(\mathbf{x})\right] = Var\left[g_{\emptyset} + g_1(x_1) + \ldots + g_{1,2}(x_1, x_2) + \ldots + g_{1,\ldots,p}(\mathbf{x})\right]
$$

= Var\left[g_{\emptyset}\right] + Var\left[g_1(x_1)\right] + \ldots + Var\left[g_{1,2}(x_1, x_2)\right] + \ldots + Var\left[g_{1,\ldots,p}(\mathbf{x})\right]

- \bullet Decomposition of $\hat{f}(\mathbf{x})$ allows to conduct functional analysis of variance (fANOVA)
- If features are independent, variance can be additively decomposed without covariances:

$$
Var\left[\hat{f}(\mathbf{x})\right] = Var\left[g_0 + g_1(x_1) + \ldots + g_{1,2}(x_1, x_2) + \ldots + g_{1,\ldots,p}(\mathbf{x})\right]
$$

= Var\left[g_0\right] + Var\left[g_1(x_1)\right] + \ldots + Var\left[g_{1,2}(x_1, x_2)\right] + \ldots + Var\left[g_{1,\ldots,p}(\mathbf{x})\right]

Dividing by the prediction variance, yields fraction of variance explained by each term:

$$
1 = \frac{\text{Var}\left[g_0\right]}{\text{Var}\left[\hat{f}(\mathbf{x})\right]} + \frac{\text{Var}\left[g_1(x_1)\right]}{\text{Var}\left[\hat{f}(\mathbf{x})\right]} + \ldots + \frac{\text{Var}\left[g_{1,2}(x_1, x_2)\right]}{\text{Var}\left[\hat{f}(\mathbf{x})\right]} + \ldots + \frac{\text{Var}\left[g_{1,\ldots,p}(\mathbf{x})\right]}{\text{Var}\left[\hat{f}(\mathbf{x})\right]}
$$

- \bullet Decomposition of $\hat{f}(\mathbf{x})$ allows to conduct functional analysis of variance (fANOVA)
- If features are independent, variance can be additively decomposed without covariances:

$$
Var\left[\hat{f}(\mathbf{x})\right] = Var\left[g_0 + g_1(x_1) + \ldots + g_{1,2}(x_1, x_2) + \ldots + g_{1,\ldots,p}(\mathbf{x})\right]
$$

= Var\left[g_0\right] + Var\left[g_1(x_1)\right] + \ldots + Var\left[g_{1,2}(x_1, x_2)\right] + \ldots + Var\left[g_{1,\ldots,p}(\mathbf{x})\right]

Dividing by the prediction variance, yields fraction of variance explained by each term:

$$
1 = \frac{Var\left[g_0\right]}{Var\left[\hat{f}(\mathbf{x})\right]} + \frac{Var\left[g_1(x_1)\right]}{Var\left[\hat{f}(\mathbf{x})\right]} + \dots + \frac{Var\left[g_{1,2}(x_1, x_2)\right]}{Var\left[\hat{f}(\mathbf{x})\right]} + \dots + \frac{Var\left[g_{1,\dots,p}(\mathbf{x})\right]}{Var\left[\hat{f}(\mathbf{x})\right]}
$$

• Fraction of variance explained by a component $g_V(\mathbf{x}_V)$ is the Sobol index: *Var* $[q_V(\mathbf{x}_V)]$

$$
S_V = \frac{\text{var}(g_V(\mathbf{x}_V))}{\text{Var}[\hat{f}(\mathbf{x})]}
$$

 \rightsquigarrow Importance measure of component $g_V(\mathbf{x}_V)$

⇝ Small *S^V* values ⇒ Component *g^V* does not explain much of total variance of \hat{f}

