Interpretable Machine Learning

Generalized Linear Models

Learning goals

- Definition of GLMs \bullet
- Logistic regression as example
- **•** Interpretation in logistic regression

GENERALIZED LINEAR MODEL (GLM) \bullet [Nelder and Wedderburn 1972](https://doi.org/10.2307/2344614)

Problem: Target variable given feat. not always normally dist. _→ LM not suitable

- Target is binary (e.g., disease classification)
	- \rightsquigarrow Bernoulli / Binomial distribution
- Target is count variable (e.g., number of sold products) \rightsquigarrow Poisson distribution
- Time until an event occurs (e.g., time until death) \rightsquigarrow Gamma distribution

GENERALIZED LINEAR MODEL (GLM) \rightarrow [Nelder and Wedderburn 1972](https://doi.org/10.2307/2344614)

Problem: Target variable given feat. not always normally dist. \rightarrow LM not suitable

- Target is binary (e.g., disease classification)
	- \rightsquigarrow Bernoulli / Binomial distribution
- Target is count variable (e.g., number of sold products) \rightsquigarrow Poisson distribution
- Time until an event occurs (e.g., time until death) \rightsquigarrow Gamma distribution

Solution: GLMs - extend LMs by allowing other distributions from exponential family

$$
g(\mathbb{E}(\bm{\mathsf{y}} \mid \bm{\mathsf{x}})) = \bm{\mathsf{x}}^\top \theta \; \Leftrightarrow \; \mathbb{E}(\bm{\mathsf{y}} \mid \bm{\mathsf{x}}) = g^{-1}(\bm{\mathsf{x}}^\top \theta)
$$

- Link function g links linear predictor $\mathbf{x}^\top \theta$ to expectation of distribution of $y \mid \mathbf{x}$ \rightarrow LM is special case: Gaussian distribution for $y \mid \mathbf{x}$ with g as identity function
- Link function *g* and distribution need to be specified
- High-order and interaction effects can be manually added as in LMs
- Note: Interpretation of weights depend on link function and distribution

GLM - LOGISTIC REGRESSION

 \bullet Logistic regression \triangleq GLM with Bernoulli distribution and logit link function:

$$
g(x) = \log\left(\frac{x}{1-x}\right) \Rightarrow g^{-1}(x) = \frac{1}{1+\exp(-x)}
$$

Models probabilities for binary classification by

$$
\pi(\mathbf{x}) = \mathbb{E}(y \mid \mathbf{x}) = P(y = 1) = g^{-1}(\mathbf{x}^\top \theta) = \frac{1}{1 + \exp(-\mathbf{x}^\top \theta)}
$$

Interpretable Machine Learning – 2 / 5

GLM - LOGISTIC REGRESSION

- Typically, we set the threshold to 0.5 to predict classes, e.g.,
	- Class 1 if $\pi(\mathbf{x}) > 0.5$
	- Class 0 if $\pi(\mathbf{x}) \leq 0.5$

GLM - LOGISTIC REGRESSION - INTERPRETATION

- **Recall:** Odds is ratio of two probabilities, odds ratio compares ratio of two odds
- Weights θ*^j* are interpreted linear as in LM (but w.r.t. log-odds) \rightsquigarrow difficult to comprehend

$$
\textit{log-odds} = \textit{log}\left(\frac{\pi(\textbf{x})}{1-\pi(\textbf{x})}\right) = \textit{log}\left(\frac{P(y=1)}{P(y=0)}\right) = \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p
$$

Interpretation:

Changing x_i by one unit, changes log-odds of class 1 compared to class 0 by θ_i

GLM - LOGISTIC REGRESSION - INTERPRETATION

- **Recall:** Odds is ratio of two probabilities, odds ratio compares ratio of two odds
- Weights θ*^j* are interpreted linear as in LM (but w.r.t. log-odds) \rightsquigarrow difficult to comprehend

$$
\textit{log-odds} = \textit{log}\left(\frac{\pi(\textbf{x})}{1-\pi(\textbf{x})}\right) = \textit{log}\left(\frac{P(y=1)}{P(y=0)}\right) = \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p
$$

Interpretation:

Changing x_i by one unit, changes log-odds of class 1 compared to class 0 by θ_i

- Odds for class 1 vs. class 0: *odds* = $\frac{\pi(x)}{1-x}$ $\frac{\partial f(x)}{\partial 1 - \pi(\mathbf{x})} = \exp(\theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p)$
- Instead of interpreting changes w.r.t. log-odds, *odds ratio* is more common \bullet

$$
= \frac{\textit{odds}_{x_j+1}}{\textit{odds}} = \frac{\exp(\theta_0 + \theta_1 x_1 + \ldots + \theta_j (x_j + 1) + \ldots + \theta_p x_p)}{\exp(\theta_0 + \theta_1 x_1 + \ldots + \theta_j x_j + \ldots + \theta_p x_p)} = \exp(\theta_j)
$$

Interpretation: Changing *x^j* by one unit, changes the **odds ratio** for class 1 (compared to class 0) by the **factor** $\exp(\theta_i)$

GLM - LOGISTIC REGRESSION - EXAMPLE

- Create a binary target variable for bike rental data:
	- Class 1: "high number of bike rentals" > 70% quantile (i.e., cnt > 5531)
	- Class 0: "low to medium number of bike rentals" (i.e., $cnt < 5531$)
- Fit a logistic regression model (GLM with Bernoulli distribution and logit link)

GLM - LOGISTIC REGRESSION - EXAMPLE

- Create a binary target variable for bike rental data:
	- Class 1: "high number of bike rentals" > 70% quantile (i.e., cnt > 5531)
	- Class 0: "low to medium number of bike rentals" (i.e., cnt \leq 5531)
- Fit a logistic regression model (GLM with Bernoulli distribution and logit link)

Interpretation

If temp increases by 1◦*C*, odds ratio for class 1 increases by factor $exp(0.29) = 1.34$ compared to class 0, c.p. (\triangleq "high number of bike rentals" now 1.34 times more likely)

