
Interpretable Machine Learning

Generalized Linear Models

Learning goals

Definition of GLMs

Logistic regression as example

Interpretation in logistic regression



GENERALIZED LINEAR MODEL (GLM) Nelder and Wedderburn 1972

Problem: Target variable given feat. not always normally dist. ⇝ LM not suitable

Target is binary (e.g., disease classification)
⇝ Bernoulli / Binomial distribution

Target is count variable
(e.g., number of sold products)
⇝ Poisson distribution

Time until an event occurs
(e.g., time until death)
⇝ Gamma distribution
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Solution: GLMs - extend LMs by allowing other distributions from exponential family

g(E(y | x)) = x⊤θ ⇔ E(y | x) = g−1(x⊤θ)

Link function g links linear predictor x⊤θ to expectation of distribution of y | x
⇝ LM is special case: Gaussian distribution for y | x with g as identity function
Link function g and distribution need to be specified
High-order and interaction effects can be manually added as in LMs
Note: Interpretation of weights depend on link function and distribution
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GLM - LOGISTIC REGRESSION

Logistic regression =̂ GLM with Bernoulli distribution and logit link function:

g(x) = log

(
x

1 − x

)
⇒ g−1(x) =

1
1 + exp(−x)

Models probabilities for binary classification by

π(x) = E(y | x) = P(y = 1) = g−1(x⊤θ) =
1

1 + exp(−x⊤θ)
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GLM - LOGISTIC REGRESSION

Typically, we set the threshold to 0.5 to predict classes, e.g.,

Class 1 if π(x) > 0.5
Class 0 if π(x) ≤ 0.5
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GLM - LOGISTIC REGRESSION - INTERPRETATION

Recall: Odds is ratio of two probabilities, odds ratio compares ratio of two odds

Weights θj are interpreted linear as in LM (but w.r.t. log-odds)
⇝ difficult to comprehend

log-odds = log

(
π(x)

1 − π(x)

)
= log

(
P(y = 1)
P(y = 0)

)
= θ0 + θ1x1 + . . .+ θpxp

Interpretation:
Changing xj by one unit, changes log-odds of class 1 compared to class 0 by θj

Odds for class 1 vs. class 0: odds =
π(x)

1 − π(x)
= exp(θ0 + θ1x1 + . . .+ θpxp)

Instead of interpreting changes w.r.t. log-odds, odds ratio is more common

=
oddsxj+1

odds
=

exp(θ0 + θ1x1 + . . .+ θj(xj + 1) + . . .+ θpxp)

exp(θ0 + θ1x1 + . . .+ θjxj + . . .+ θpxp)
= exp (θj)

Interpretation: Changing xj by one unit, changes the odds ratio for class 1
(compared to class 0) by the factor exp(θj)
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GLM - LOGISTIC REGRESSION - EXAMPLE

Create a binary target variable for bike rental data:

Class 1: “high number of bike rentals” > 70% quantile (i.e., cnt > 5531)
Class 0: “low to medium number of bike rentals” (i.e., cnt ≤ 5531)

Fit a logistic regression model (GLM with Bernoulli distribution and logit link)

Weights SE p-value
(Intercept) -8.52 1.21 0.00

seasonSPRING 1.74 0.60 0.00
seasonSUMMER -0.86 0.77 0.26

seasonFALL -0.64 0.55 0.25
temp 0.29 0.04 0.00
hum -0.06 0.01 0.00

windspeed -0.09 0.03 0.00
days_since_2011 0.02 0.00 0.00
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Interpretation

If temp increases by 1◦C, odds ratio for class 1 increases by factor
exp(0.29) = 1.34 compared to class 0, c.p. (=̂ “high number of bike rentals”
now 1.34 times more likely)
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