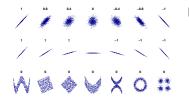
Interpretable Machine Learning

Correlation and Dependencies



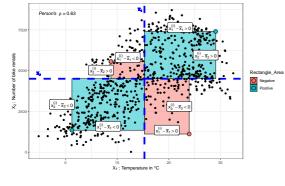
Learning goals

- Pearson correlation
- Coefficient of determination R²
- Mutual Information
- Correlation vs. dependence

PEARSON'S CORRELATION COEFFICIENT ρ

Correlation often refers to Pearson's correlation (measures only **linear relationship**)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

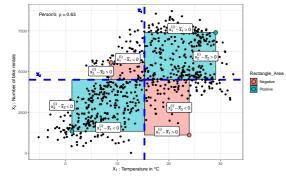


- Numerator is sum of rectangle's area with width $x_1^{(i)} \bar{x}_1$ and height $x_2^{(i)} \bar{x}_2$
- Areas enter numerator with positive (+) or negative (-) sign, depending on position
- Denominator scales the sum into the range [-1, 1]

PEARSON'S CORRELATION COEFFICIENT ρ

Correlation often refers to Pearson's correlation (measures only **linear relationship**)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

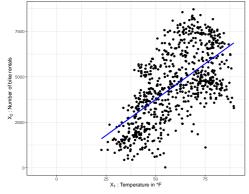


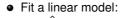
- Numerator is sum of rectangle's area with width $x_1^{(i)} \bar{x}_1$ and height $x_2^{(i)} \bar{x}_2$
- Areas enter numerator with positive (+) or negative (-) sign, depending on position
- Denominator scales the sum into the range [-1, 1]
- ullet ho > 0 if positive areas dominate negative areas $\leadsto X_1, X_2$ positive correlated
- ullet $\rho < 0$ if negative areas dominate positive areas $\leadsto X_1, X_2$ negative correlated
- $\rho = 0$ if area of rectangles cancels out $\rightsquigarrow X_1, X_2$ linearly uncorrelated



COEFFICIENT OF DETERMINATION R²

Another method to evaluate **linear dependency** between features is R^2





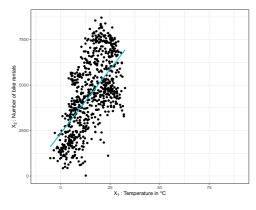
$$\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$$

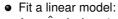
$$\rightsquigarrow$$
 Slope $\theta_1 = 0 \Rightarrow$ no dependence

 $\rightsquigarrow \ \, \text{Large slope} \Rightarrow \text{strong dependence}$

COEFFICIENT OF DETERMINATION R²

Another method to evaluate **linear dependency** between features is R^2





$$\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$$

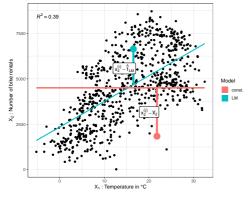
$$\rightsquigarrow$$
 Slope $\theta_1 = 0 \Rightarrow$ no dependence

- $\rightsquigarrow \ \, \text{Large slope} \Rightarrow \text{strong dependence}$
- Exact θ_1 score problematic
- \rightsquigarrow Re-scaling of x_1 or x_2 changes θ_1

$$ightsquigarrow$$
 °F $ightarrow$ °C \Rightarrow $\theta_1 = 78
ightarrow$ $\theta_1^* = 141$

COEFFICIENT OF DETERMINATION R²

Another method to evaluate **linear dependency** between features is R^2



- Fit a linear model: $\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$
- \rightsquigarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence
- \rightsquigarrow Large slope \Rightarrow strong dependence
- Exact θ_1 score problematic
- \rightsquigarrow Re-scaling of x_1 or x_2 changes θ_1
 - Set SSE_{LM} in relation to SSE of a constant model $\hat{f}_c = \bar{x}_2$ $SSE_{LM} = \sum_{i=1}^n (x_2^{(i)} - \hat{f}_{LM}(x_1^{(i)}))^2$ $SSE_c = \sum_{i=1}^n (x_2^{(i)} - \bar{x}_2)^2$

 \Rightarrow Measure of fitting quality of LM: $R^2 = 1 - \frac{SSE_{LM}}{SSE_c} \in [0, 1]$

$$\Rightarrow \rho(X_1, X_2) = R$$



JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1, X_2 = x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

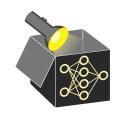
JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1



Marginal distribution

$$p_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

→ In continuous case with integrals

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

Marginal distribution

$$p_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

→ In continuous case with integrals

Conditional distribution

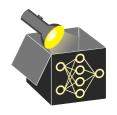
$$\begin{aligned} \rho_{X_1|X_2}(x_1|x_2) &= \mathbb{P}(X_1 = x_1|X_2 = x_2) \\ &= \frac{\rho_{X_1,X_2}(x_1,x_2)}{\rho_{X_2}(x_2)} \end{aligned}$$

	$x_2 = 0$	$x_2 = 1$
$\mathbb{P}(X_1=0 X_2=x_2)$	0.67	0.43
$\mathbb{P}(X_1=1 X_2=x_2)$	0.33	0.57
\sum	1	1

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$



Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k)=\mathbb{P}(X_j)\cdot\mathbb{P}(X_k)$$

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from cond. probability)

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

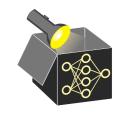
• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k)=\mathbb{P}(X_j)\cdot\mathbb{P}(X_k)$$

• Equivalent definition (knowledge of X_k says nothing about X_j and vice versa):

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from cond. probability)

- Measuring complex dependencies is difficult but different measures exist, e.g.,
 - → Spearman correlation (measures monotonic dependencies via ranks)
 - → Information-theoretical measures like mutual information



Dependence: Describes general dependence structure (e.g., non-lin. relationships)

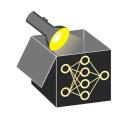
• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

• Equivalent definition (knowledge of X_k says nothing about X_j and vice versa):

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from cond. probability)

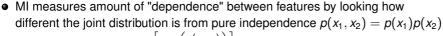
- Measuring complex dependencies is difficult but different measures exist, e.g.,
 - → Spearman correlation (measures monotonic dependencies via ranks)
 - → Information-theoretical measures like mutual information
 - → Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)
- N.B.: X_j , X_k independent $\Rightarrow \rho(X_j, X_k) = 0$ but $\rho(X_j, X_k) = 0 \Rightarrow X_j$, X_k indep. Equivalency holds if distribution is jointly normal



MUTUAL INFORMATION

• MI describes expected amount of information shared by two random variables:

$$MI(X_1; X_2) = \mathbb{E}_{p(x_1, x_2)} \left[log \left(\frac{p(x_1, x_2)}{p(x_1)p(x_2)} \right) \right]$$



$$\rightsquigarrow MI(X_1, X_2) = \mathbb{E}_{p(x_1, x_2)} \left[log \left(\frac{p(x_1, x_2)}{p(x_1, x_2)} \right) \right] = \mathbb{E}_{p(x_1, x_2)} \left[log(1) \right] = 0$$
 $\rightsquigarrow MI(X_j, X_k) = 0$ if and only if the features are independent

• Unlike (Pearson) correlation, MI is not limited to continuous random variables

MUTUAL INFORMATION: EXAMPLE

For two discrete RV X_1 and Y:

$$\mathit{MI}(X_1;Y) = \mathbb{E}_{p(x_1,y)}\left[\log\left(\frac{p(x_1,y)}{p(x_1)p(y)}\right)\right] = \sum_{x_1 \in \mathcal{X}_1} \sum_{y \in \mathcal{Y}} p(x_1,y)\log\left(\frac{p(x_1,y)}{p(x_1)p(y)}\right)$$



X ₁	 Υ
yes	 yes
yes	 no
no	 yes
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p_Y
$\mathbb{P}(Y = \text{yes})$	0.25	0.25	0.5
$\mathbb{P}(Y = no)$	0.25	0.25	0.5
p_{X_1}	0.5	0.5	1

MUTUAL INFORMATION: EXAMPLE

For two discrete RV X_1 and Y:

$$MI(X_1; Y) = \mathbb{E}_{p(x_1, y)} \left[log \left(\frac{p(x_1, y)}{p(x_1)p(y)} \right) \right] = \sum_{x_1 \in \mathcal{X}_1} \sum_{y \in \mathcal{Y}} p(x_1, y) log \left(\frac{p(x_1, y)}{p(x_1)p(y)} \right)$$

X ₁	 Υ
yes	 yes
yes	 no
no	 yes
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p_Y
$\mathbb{P}(Y = \text{yes})$	0.25	0.25	0.5
$\mathbb{P}(Y = no)$	0.25	0.25	0.5
p_{X_1}	0.5	0.5	1

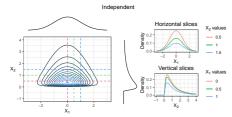
$$MI(X_1; Y) = 0.25 \log \left(\frac{0.25}{0.5 \cdot 0.5}\right) + 0.25 \log \left(\frac{0.25}{0.5 \cdot 0.5}\right)$$

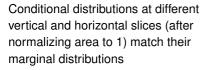
$$= 0.25 \log \left(\frac{0.25}{0.25}\right) \cdot 4$$

$$= 0.25 \log (1) \cdot 4 = 0$$

DEPENDENCE AND INDEPENDENCE

Example:

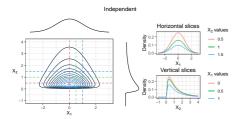


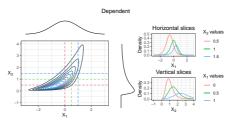


$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$
$$\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$$

DEPENDENCE AND INDEPENDENCE

Example:





Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

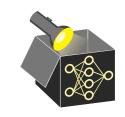
$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$
$$\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$$

Conditional distributions do not match their marginal distributions

CORRELATION VS. DEPENDENCE

Illustration of bivariate normal distribution with different correlations $X_1, X_2 \sim N(0, 1)$

$$ho(X_1, X_2) = 0$$
 $ho(X_1, X_2) = 0.8$ $ho(X_1, X_2) = -0.8$ (independent)



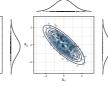
CORRELATION VS. DEPENDENCE

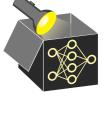
Illustration of bivariate normal distribution with different correlations X_1 , $X_2 \sim N(0,1)$

$$(independent)$$

$$\rho(X_1,X_2) =$$

$$\rho(X_1, X_2) = 0$$
 $\rho(X_1, X_2) = 0.8$
 $\rho(X_1, X_2) = -0.8$





Examples with Pearson's correlation $\rho \approx 0$ but non-linear dependencies (MI $\neq 0$):

$$\rho(X_1,X_2) = 0 \; , \; \; \text{MI}(X_1,X_2) = 0.52 \qquad \rho(X_1,X_2) = 0.01 \; , \; \; \text{MI}(X_1,X_2) = 0.37 \quad \rho(X_1,X_2) = -0.06 \; , \; \; \text{MI}(X_1,X_2) = 0.61 \; , \; \; \text{MI}(X_1,X_2) = 0.01 \; , \; \;$$

