Interpretable Machine Learning

Correlation and Dependencies
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o o @ Pearson correlation

@ Coefficient of determination R?
@ Mutual Information
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Correlation vs. dependence



PEARSON’S CORRELATION COEFFICIENT p

Correlation often refers to Pearson’s correlation (measures only linear relationship)
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PEARSON’S CORRELATION COEFFICIENT p

Correlation often refers to Pearson’s correlation (measures only linear relationship)
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A, . Geometric interpretation of p:
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@ Numerator is sum of
rectangle’s area with width
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: positive (+) or negative (-)
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@ Denominator scales the sum
| into the range [—1, 1]
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X : Temperature in °C

@ p > 0if positive areas dominate ~ Xi, Xo positive correlated
@ p<Oif dominate positive areas ~» Xj, Xo negative correlated
@ p = 0if area of rectangles cancels out ~» Xi, X5 linearly uncorrelated
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COEFFICIENT OF DETERMINATION R?

Another method to evaluate linear dependency between features is R?

@ Fit a linear model:
Xo = fim(xq) = 6o + b1xq
~> Slope 0y = 0 = no dependence

7500

5000

~+ Large slope = strong dependence

Xz : Number of bike rentals
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COEFFICIENT OF DETERMINATION R?

Another method to evaluate linear dependency between features is R?

@ Fit a linear model:
Xo = fim(xq) = 6o + b1xq
Slope 01 = 0 = no dependence

7500

Large slope = strong dependence
Exact 6 score problematic

5000

Xz : Number of bike rentals

Re-scaling of x; or x> changes 6,
F— C= 0, =78—0; =141
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COEFFICIENT OF DETERMINATION R?

Another method to evaluate linear dependency between features is R?

R?=0.39

@ Fit a linear model:
Xo = fim(xq) = 6o + b1xq
Slope 01 = 0 = no dependence

5000

Large slope = strong dependence
Exact 6 score problematic

Xz : Number of bike rentals

Re-scaling of x; or x> changes 6,

Set SSE,  in relation to SSE of a
constant model f, = X

: . SSEm = Y7404 — ()2
X, : Temperature in °C SSEC — 2;7:1( )2

= Measure of fitting quality of LM: R? = 1 — S35 € [0, 1]
= p(X1,X2) =R

=
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JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables Xi, Xa:

Joint distribution

pX17X2(X17X2) = IP(X1 =X, X = X2)
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JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables Xi, Xa:

Joint distribution

pX17X2(X17X2) = IP(X1 =X, X = X2)

Marginal distribution

PXy, X% ]P(X2 = 0) ]P(X2 = 1)
Px; (X1) = X1 = X1 Z p(X1 R X2) IP(X1 = 0) 0.2 0.3
Xo€Xa P(X =1) 0.1 0.4
PX, 0.3 0.7 1

~» In continuous case with integrals

Interpretable Machine Learning — 3/8



JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables Xi, Xa:

Joint distribution

pX17X2(X17X2) = IP(X1 =X, X = X2)

Marginal distribution

PXy, X% ]P(X2 = 0) ]P(X2 = 1)
Px; (X1) = X1 = X1 Z p(X1 R X2) IP(X1 = 0) 0.2 0.3
Xo€Xa P(X =1) 0.1 0.4
PX, 0.3 0.7 1

~» In continuous case with integrals
Conditional distribution

X1|x0) = P(Xy = x4| X5 = x P(X; =0
PX1|x2( 1]X2) (X 1] X2 2) PO =T
_ P)q,xz(Xan) )

Px, (x2)
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DEPENDENCE

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

@

@ Definition: Xj, X, independent <> joint distribution is product of marginals:

P(Xj, Xi) = P(X)) - P(X)
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DEPENDENCE

Dependence: Describes general dependence structure (e.g., non-lin. relationships)
@ Definition: Xj, X, independent <> joint distribution is product of marginals:

P(Xj, Xc) = P(X;) - P(X)
@ Equivalent definition (knowledge of X, says nothing about X; and vice versa):

P(Xj| Xx) = P(X;) and P(Xk|X;) = P(Xi) (follows from cond. probability)
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DEPENDENCE

Dependence: Describes general dependence structure (e.g., non-lin. relationships)
@ Definition: Xj, X, independent <> joint distribution is product of marginals:

P(Xj, Xc) = P(X;) - P(X)
@ Equivalent definition (knowledge of X, says nothing about X; and vice versa):
P(Xj| Xx) = P(X;) and P(Xk|X;) = P(Xi) (follows from cond. probability)

@ Measuring complex dependencies is difficult but different measures exist, e.g.,
~~ Spearman correlation (measures monotonic dependencies via ranks)
~~ Information-theoretical measures like mutual information
~~ Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)
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DEPENDENCE

Dependence: Describes general dependence structure (e.g., non-lin. relationships)
@ Definition: Xj, X, independent <> joint distribution is product of marginals:

P(Xj, Xc) = P(X;) - P(X)
@ Equivalent definition (knowledge of X, says nothing about X; and vice versa):
P(Xj| Xx) = P(X;) and P(Xk|X;) = P(Xi) (follows from cond. probability)

@ Measuring complex dependencies is difficult but different measures exist, e.g.,
~~ Spearman correlation (measures monotonic dependencies via ranks)
~» Information-theoretical measures like mutual information
~~ Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)
@ N.B.: X, Xy independent = p(X;, Xk) = 0 but p(Xj, Xk) = 0 % X;, X, indep.
Equivalency holds if distribution is jointly normal
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MUTUAL INFORMATION

@ Ml describes expected amount of information shared by two random variables:

MI(X1; X2) = Ep(x,,x) {/og <m>}

@ MI measures amount of "dependence" between features by looking how
different the joint distribution is from pure independence p(xi, X2) = p(x1)p(x2)

~ MI(Xy, X2) = Ep(e, x) [/og (5&1 fm = Ep(x x) [log(1)] =0
~» MI(X;, Xi) = 0 if and only if the features are independent

@ Unlike (Pearson) correlation, Ml is not limited to continuous random variables
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MUTUAL INFORMATION: EXAMPLE

For two discrete RV X; and Y

pixi,y p( 1 y)
MI(X1; Y) = Epx,, {/og()} p(x,y < >

06:Y) = Buto) 100 {3007 )| = 2 2 (0)p(y)
X Y P(X; = yes) | P(X; = no) | py

yes yes P(Y = yes) 0.25 0.25 05

yes no P(Y = no) 0.25 0.25 05

no yes Px, 05 05 i

no no
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MUTUAL INFORMATION: EXAMPLE

For two discrete RV X; and Y:
(X1 ,V) ( y)
MI(X:; Y) = Ep(x,, {/09 <— p(xi,y)lo
p(x1,y) p(x1) X;( y%;} p( x1)p(y)

Xi | .| Y _

yes | ... | yes | P(X; = yes)

yes no

no | .. | yes

no no

0.25 0.25
MI(X;; Y) =025 0.25 4
(% Y) °g<0.5 0.5) + 09(0.5-0.5)

+02500g (2 ) +0.25log ([ ——
=9\05.05) T\ 0505

0.25
—0.251
9 <025>
—0.25l0g(1)- 4= 0
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DEPENDENCE AND INDEPENDENCE

Example:

Independent

Horizontal slices
X, values

2
HERYZAN .

X;

1
Vertical slices
Xy values

Conditional distributions at different
vertical and horizontal slices (after
normalizing area to 1) match their
marginal distributions

P(Xx|X1) = P(Xz)
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DEPENDENCE AND INDEPENDENCE

Example:

Independent

X, values
zoz os
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Xy
Vertical slices
Xy values
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Conditional distributions at different
vertical and horizontal slices (after
normalizing area to 1) match their
marginal distributions

P(Xx|X1) = P(Xz)

Dependent
/\ Horizontal slices
05 X, values
204
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§o2 X —1
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Xy
Vertical slices
Xy values
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Conditional distributions do not match
their marginal distributions
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CORRELATION VS. DEPENDENCE

lllustration of bivariate normal distribution with different correlations X, Xo ~ N(0,1)

p(X1,X2) =0 p(X1,X2) =0.8 p(X1,X2) =-0.8
(independent)
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CORRELATION VS. DEPENDENCE

lllustration of bivariate normal distribution with different correlations X, Xo ~ N(0,1)

p(X1, %) =0 p(X1,X2) =08 p(X1,X2) = —0.8
(independent)

Examples with Pearson’s correlation p =~ 0 but non-linear dependencies (Ml # 0):
p(X1, X2) =0, MI(Xg, X5) =052 p(Xy, Xz) =0.01, MI(Xy, Xz) =0.37 p(Xy, Xp) =-0.06, MI(Xy, X) = 0.61
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