Interpretable Machine Learning

Dimensions of Interpretability

Learning goals

- Intrinsic vs. model-agnostic methods
- Different types of explanations
- Local vs. global methods
- Model or learner explanations with or without refits
- Levels of interpretability

INTRINSIC VS. MODEL-AGNOSTIC

Intrinsically interpretable models:

- Examples: linear model, decision tree, decision rule, GLMs
- Interpretable because of simple model structure, e.g., weighted combination of feature values or tree structure
- Difficult to interpret with many features / complex interactions

INTRINSIC VS. MODEL-AGNOSTIC

Model-specific methods:

- Interpretation method applicable to a specific ML model
- Example: implicitly integrated feature interpretation methods in tree based models, e.g., Gini Importance
- Advantage: Can exploit model structure
- Visualize activations of NNs

INTRINSIC VS. MODEL-AGNOSTIC

Model-agnostic methods:

- In ML: Tune over many model classes
 → Unknown which model is best / deployed
 → Need for interpretation methods applicable to any model
- Applied after training (post-hoc)
- Applicable to intrinsically interpretable models → provides insights into other types of explanations

Feature Attribution:

- Produce explanations on a per-feature level, e.g., feature effects or feature importance
- Vary feature values, inspect change of model prediction, model variance or model error

Feature Effects indicate the change in prediction due to changes in feature values.

- Model-agnostic methods: ICE curves, PD plots ...
- Pendant in linear models: Regression coefficient θ_i
- Further examples: Saliency Maps, model-agnostic methods such as SHAP and LIME

Feature importance methods rank features by how much they contribute to the predictive performance or prediction variance of the model.

- Model-agnostic methods: PFI, ...
- Pendant in linear models: t-statistic, p-value (significant effect)

Global Importance (aggregated) Permutation Importance

Data Attribution: Identify training instances most responsible for a decision (e.g. Influence Functions)

Data Attribution: Identify training instances most responsible for a decision (e.g. Influence Functions)

Example: Consider a model which should distinguish muffins and dogs

How does this incorrect prediction come about?

Data Attribution: Identify training instances most responsible for a decision (e.g. Influence Functions)

Look at training data: Which data points caused the model prediction?

Method searches for the most similar images and bases the decision on them

- → Training images looking most like new input show a muffin
- → Wrong output (muffin instead of dog)

Counterfactual Explanations:

- Identify smallest necessary change in feature values so that a desired outcome is predicted
- Contrastive explanations
- Diverse counterfactuals
- Feasible & actionable explanations

Example (loan application):

What can a person do to obtain a favorable prediction from a given model ?

GLOBAL VS. LOCAL

Global interpretation methods explain the model behavior for the entire input space by considering all available observations:

- Permutation Feature Importance (PFI)
- Partial Dependence (PD) plots
- Accumulated Local Effect (ALE) plots

• ...

• ...

Local interpretation methods explain the model behavior for single data instances:

- Individual Conditional Expectation (ICE) curves
- Local Interpretable Model-Agnostic Explanations (LIME)
- Shapley values, SHAP

x1

10.0

FIXED MODEL VS. REFITS

● Input of global interpretation methods: model + data, output: explanations → Explanations can be viewed as statistical estimators

- Situation in ML: Deployed model is trained on all available data
 → No unseen test data left to, e.g., reliably estimate performance
 → IML method could use same data model was trained on
 → But: Some IML methods rely on measuring loss requiring unseen test data
- Alternative: Explain the inducer that created the model (instead of a fixed model)
 → Idea: Use resample strategies (e.g., 4-fold CV) as in performance estimation
 → Requires refitting

LEVELS OF INTERPRETABILITY

LEVELS OF INTERPRETABILITY

LEVELS OF INTERPRETABILITY

	Research Question	Objects of analysis
1 st level view	How to explain a given model fitted on a data set?	(deployed) model $ heta\mapsto \widehat{f}(heta)$
2 nd level view	How does an optimizer choose a model based on a data set?	Model selection process (e.g., decisions made by AutoML systems or HPO process)
3 rd level view	How do data properties relate to performance of a learner and its hyperparameters?	properties of ML algorithms in general (benchmark)
(Data 1 Data 2 Data 3 Data 4 Data 4 Data n Data n	Best IML Model