
Interpretable Machine Learning

Dimensions of Interpretability

Learning goals

Intrinsic vs. model-agnostic methods

Different types of explanations

Local vs. global methods

Model or learner explanations – with or
without refits

Levels of interpretability



INTRINSIC VS. MODEL-AGNOSTIC

Model Interpretation

Interpretable Models Black Box Models

Model-specific Methods Model-agnostic Methods

Intrinsically interpretable models:

Examples: linear model, decision tree, decision rule, GLMs

Interpretable because of simple model structure,
e.g., weighted combination of feature values or tree structure

Difficult to interpret with many features / complex
interactions
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x1 < 0.3 x1 ≥ 0.3

x1 < 0.6 x1 ≥ 0.6

x2 < 0.2 x2 ≥ 0.2
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INTRINSIC VS. MODEL-AGNOSTIC

Model Interpretation

Interpretable Models Black Box Models

Model-specific Methods Model-agnostic Methods

Model-specific methods:

Interpretation method applicable to a specific ML model

Example: implicitly integrated feature interpretation methods
in tree based models, e.g., Gini Importance

Advantage: Can exploit model structure

Visualize activations of NNs
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INTRINSIC VS. MODEL-AGNOSTIC

Model Interpretation

Interpretable Models Black Box Models

Model-specific Methods Model-agnostic Methods

Model-agnostic methods:

In ML: Tune over many model classes
⇝ Unknown which model is best / deployed
⇝ Need for interpretation methods applicable to any model

Applied after training (post-hoc)

Applicable to intrinsically interpretable models
⇝ provides insights into other types of explanations
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TYPES OF EXPLANATIONS

Model Interpretation

Feature Attribution Data Attribution Counterfactual Explanations

Feature Attribution:

Produce explanations on a per-feature level, e.g., feature effects or feature
importance

Vary feature values, inspect change of model prediction, model variance or
model error
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TYPES OF EXPLANATIONS

Model Interpretation

Feature Attribution Data Attribution Counterfactual Explanations

Feature Effects indicate the change in prediction due to changes in feature values.

Model-agnostic methods:
ICE curves, PD plots . . .

Pendant in linear models:
Regression coefficient θj

Further examples: Saliency
Maps, model-agnostic
methods such as SHAP and
LIME
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TYPES OF EXPLANATIONS

Model Interpretation

Feature Attribution Data Attribution Counterfactual Explanations

Feature importance methods rank features by how much they contribute to the
predictive performance or prediction variance of the model.

Model-agnostic methods: PFI, . . .

Pendant in linear models: t-statistic,
p-value (significant effect)
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TYPES OF EXPLANATIONS

Model Interpretation

Feature Attribution Data Attribution Counterfactual Explanations

Data Attribution: Identify training instances most responsible for a decision (e.g.
Influence Functions)
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TYPES OF EXPLANATIONS

Model Interpretation

Feature Attribution Data Attribution Counterfactual Explanations

Data Attribution: Identify training instances most responsible for a decision (e.g.
Influence Functions)
Example: Consider a model which should distinguish muffins and dogs

How does this incorrect prediction come about?
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TYPES OF EXPLANATIONS

Model Interpretation

Feature Attribution Data Attribution Counterfactual Explanations

Data Attribution: Identify training instances most responsible for a decision (e.g.
Influence Functions)
Look at training data: Which data points caused the model prediction?

Method searches for the most similar
images and bases the decision on them

⇝ Training images looking most like
new input show a muffin

⇝ Wrong output (muffin instead of dog)
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TYPES OF EXPLANATIONS

Model Interpretation

Feature Attribution Data Attribution Counterfactual Explanations

Counterfactual Explanations:

Identify smallest necessary change in feature
values so that a desired outcome is predicted

Contrastive explanations

Diverse counterfactuals

Feasible & actionable explanations
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TYPES OF EXPLANATIONS

Model Interpretation

Feature Attribution Data Attribution Counterfactual Explanations

Example (loan application):

Avishek Anand �39

Counterfactuals and Recourse

What can a person do to obtain a favorable prediction from a given model ?

Bachelor > 20,000 0

Bachelor 10,000 0��. Amirata Ghorbani, Abubakar Abid, and James Y. Zou. “Interpretation of Neural Networks Is Fragile”.
In: The Thirty-Third AAAI Conference on Arti�cial Intelligence, AAAI ����, The Thirty-First Innovative
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Advances in Arti�cial Intelligence, EAAI ����, Honolulu, Hawaii, USA, January �� - February �, ����. AAAI
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Ed. by Annette N. Markham et al. ACM, ����, pp. �8�–�86. ���: 10.1145/3375627.3375830
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of Applied Statistics (����), pp. ����–���� [maybe this is mandatory reading for this Chapter ?] (-)

��. Pang Wei Koh and Percy Liang. “Understanding black-box predictions via in�uence functions”. In:
arXiv preprint arXiv:����.����� (����)
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icism for interpretability”. In: Advances in neural information processing systems. ���6, pp. ��8�–
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��. Chaofan Chen et al. “This looks like that: deep learning for interpretable image recognition”. In: Ad-
vances in neural information processing systems. ����, pp. 8���–8���

�6. Berk Ustun, Alexander Spangher, and Yang Liu. “Actionable recourse in linear classi�cation”. In: Pro-
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GLOBAL VS. LOCAL
Global interpretation methods explain the model behavior for the entire input space
by considering all available observations:

Permutation Feature Importance (PFI)

Partial Dependence (PD) plots

Accumulated Local Effect (ALE) plots

...

Local interpretation methods explain the model
behavior for single data instances:

Individual Conditional Expectation (ICE) curves

Local Interpretable Model-Agnostic Explanations
(LIME)

Shapley values, SHAP

...
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FIXED MODEL VS. REFITS

Input of global interpretation methods: model + data, output: explanations
⇝ Explanations can be viewed as statistical estimators

Situation in ML: Deployed model is trained on all available data
⇝ No unseen test data left to, e.g., reliably estimate performance
⇝ IML method could use same data model was trained on
⇝ But: Some IML methods rely on measuring loss requiring unseen test data

Alternative: Explain the inducer that created the model (instead of a fixed model)
⇝ Idea: Use resample strategies (e.g., 4-fold CV) as in performance estimation
⇝ Requires refitting
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LEVELS OF INTERPRETABILITY

Research Question Objects of analysis

1st

level
view

How to explain a given model
fitted on a data set?

(deployed) model
θ 7→ f̂ (θ)
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LEVELS OF INTERPRETABILITY
Research Question Objects of analysis

1st

level
view

How to explain a given model
fitted on a data set?

(deployed) model
θ 7→ f̂ (θ)

2nd

level
view

How does an optimizer choose
a model based on a data set?

Model selection process (e.g.,
decisions made by AutoML
systems or HPO process)
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LEVELS OF INTERPRETABILITY
Research Question Objects of analysis

1st

level
view

How to explain a given model
fitted on a data set?

(deployed) model
θ 7→ f̂ (θ)

2nd

level
view

How does an optimizer choose
a model based on a data set?

Model selection process (e.g.,
decisions made by AutoML
systems or HPO process)

3rd

level
view

How do data properties relate to
performance of a learner and its

hyperparameters?

properties of ML algorithms in
general (benchmark)
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