Introduction to Machine Learning

Hyperparameter Tuning Problem Definition

Learning goals

- Definition of HPO objective and components
- Understand its properties
- What makes tuning challenging

HYPERPARAMETER OPTIMIZATION

Hyperparameters (HP) λ are parameters that are *inputs* to learner \mathcal{I} which performs ERM on training data set to find optimal **model parameters** θ . HPs can influence the generalization performance in a non-trivial and subtle way.

Hyperparameter optimization (HPO) / Tuning is the process of finding a well-performing hyperparameter configuration (HPC) $\lambda\in\tilde{\Lambda}$ for an learner $\mathcal{I}_{\lambda}.$

× × ×

OBJECTIVE AND SEARCH SPACE

Search space $\tilde{\Lambda} \subset \Lambda$ with all optimized HPs and ranges:

 $ilde{\mathbf{\Lambda}} = ilde{\mathbf{\Lambda}}_1 imes ilde{\mathbf{\Lambda}}_2 imes \cdots imes ilde{\mathbf{\Lambda}}_l$

where $\tilde{\Lambda}_i$ is a bounded subset of the domain of the i-th HP Λ_i , and can be either continuous, discrete, or categorical.

The general HPO problem is defined as:

$$\boldsymbol{\lambda}^* \in \argmin_{\boldsymbol{\lambda} \in \tilde{\boldsymbol{\Lambda}}} \boldsymbol{c}(\boldsymbol{\lambda}) = \argmin_{\boldsymbol{\lambda} \in \tilde{\boldsymbol{\Lambda}}} \widehat{\operatorname{GE}}(\mathcal{I}, \mathcal{J}, \rho, \boldsymbol{\lambda})$$

with λ^* as theoretical optimum, and $c(\lambda)$ is short for estim. gen. error when \mathcal{I} , resampling splits \mathcal{J} , performance measure ρ are fixed.

OBJECTIVE AND SEARCH SPACE

$$\boldsymbol{\lambda}^* \in \argmin_{\boldsymbol{\lambda} \in \tilde{\boldsymbol{\Lambda}}} \boldsymbol{c}(\boldsymbol{\lambda}) = \argmin_{\boldsymbol{\lambda} \in \tilde{\boldsymbol{\Lambda}}} \widehat{\operatorname{GE}}(\mathcal{I}, \mathcal{J}, \rho, \boldsymbol{\lambda})$$

× × ×

• Evals are stored in archive

$$\mathcal{A} = ((\boldsymbol{\lambda}^{(1)}, \boldsymbol{c}(\boldsymbol{\lambda}^{(1)})), (\boldsymbol{\lambda}^{(2)}, \boldsymbol{c}(\boldsymbol{\lambda}^{(2)})), \dots),$$
 with $\mathcal{A}^{[t+1]} = \mathcal{A}^{[t]} \cup (\boldsymbol{\lambda}^+, \boldsymbol{c}(\boldsymbol{\lambda}^+)).$

• We can define tuner as function $\tau : (\mathcal{D}, \mathcal{I}, \tilde{\Lambda}, \mathcal{J}, \rho) \mapsto \hat{\lambda}$

WHY IS TUNING SO HARD?

- Tuning is usually **black box**: No derivatives of the objective are availabe. We can only eval the performance for a given HPC via a computer program (CV of learner on data).
- Every evaluation can require multiple train and predict steps, hence it's **expensive**.
- Even worse: the answer we get from that evaluation is **not exact**, **but stochastic** in most settings, as we use resampling.
- Categorical and dependent hyperparameters aggravate our difficulties: the space of hyperparameters we optimize over can have non-metric, complicated structure.
- Many standard optimization algorithms cannot handle these properties.

× × ×