Introduction to Machine Learning

Hyperparameter Tuning Practical Aspects

× 0 0 × × ×

Learning goals

- Understand the possible design choices for HPO
- Know termination criteria of HPO

- Choosing resampling
 - Nr of observations, i.i.d assumption for data sampling process
 - Higher resampling rates likely result in a better model; however they are computiationally more expensive

Tuning a CART on the spirals data with a k-fold CV (k=1 means here a 2/3 holdout split) using grid search and estimating the true GE with a very large test set (5 repetitions)

× × ×

- Choosing performance measure
 - Desired implications when applying the model in practice
- Choosing a pipeline and search space
 - Numeric HPs of arbitrary size should be tuned on log scale
 - Size of search space results in different trade-offs: too small may miss out well performing HPCs; too large makes optimization more difficult

× 0 0 × × ×

Tuning cp and minsplit for a CART on the titanic data over 3 increasing rectangular search spaces with random search (candidates number fixed) and comparing the result with the optimal model (found with exhaustive grid search)

× × ×

- Choosing HPO algorithm
 - For few HPS (1-3), grid search can be used
 - BO with GPs for upto 10 numeric HPs
 - BO with RFs handle mixed HP spaces
 - Random search and Hyperband work well as long as the "effective" dimension is low
 - EAs are somewhat in-between BO and RS, can handle very complex spaces, but less sample efficient than BO
 - Also: use something that's stable and robust! More an aspect of the implementation than the algo!

× × ×

When to terminate HPO

- Specify a certain amount of runtime/budget beforehand
- Set a lower bound regarding $\widehat{\rm GE}$
- Terminate if performance improvement stagnates

× × 0 × × ×

Different stopping points while tunining CART on the titanic data depending on which termination criterion is used

- Warm starts
 - Evaluations (e.g., weight sharing of neural networks)
 - Optimization (intializing with HPCs that worked well before)
- Control of execution
 - Parallelizability of HPO algorithms differs strongly
 - HPO execution can be parallelized at different levels (outer resampling, iteration, evaluation, inner resampling, model fit)

× 0 0 × × ×