Introduction to Machine Learning

Hyperparameter Tuning
In a Nutshell

Learning goals

@ Understand the main idea behind
tuning,

@ fulfilling the untouched-test set
principle via nested resampling,

@ and pipelines
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WHAT IS TUNING?

@ Tuning is the process of selecting the best hyperparameters, denoted as
A, for a machine learning model.

@ Hyperparameters are the parameters of the learner (versus model
parameters ).
@ Consider a guitar analogy: Hyperparameters are akin to the tuning pegs.

Learning the best parameters 6 — playing the guitar — is a separate
process that depends on tuning.
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WHY TUNING MATTERS

@ Just like a guitar won’t perform well when out-of-tune, properly tuning a
learner can drastically improve the resulting model performance.

@ Tuning helps find a balance between underfitting and overfitting.
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Comparing AUCs of different values for hyperparameters maxdepth, k, gamma, and C
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HOW HARD COULD IT BE?

@ Very difficult: There are lots of different configurations to choose from,
known as the hyperparameter space, denoted by A (analogous to ©).

@ Black box: If one opts for a configuration A € A, how can its
performance be measured (and compared)?

= Well-thought-out Black-Box Optimization Techniques are needed.
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Exponential growth of A: For two discrete hyperparameters with each 10 possible values,
10 - 10 = 100 configurations can be evaluated

Introduction to Machine Learning — 3/7

X X



NAIVE APPROACHES

Goal: Find a best configuration A* € arg min @(Z, Py )
XEA

= Tuners T, e.g., Grid Search and Random Search, output a \*
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Sophisticated techniques, based on assumptions about the objective function,

search for optimal solutions more efficiently.
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UNTOUCHED-TEST-SET PRINCIPLE

We've found a A* € A. How well does it perform?

@ Careful: We cannot use the same data for both tuning and
performance estimation, as this would lead to (optimistically)
biased performance estimates!

@ To obtain an unbiased @ we need an untouched test set:
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NESTED RESAMPLING

To decrease variance of the EE, Nested Resampling is used:

@ Just as we generalized holdout splitting to resampling, we generalize the
three-way split to nested resampling (as we first have to find A*):
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PIPELINES IN MACHINE LEARNING

Pipelines are like the assembly lines in machine learning. They
automate the sequence of data processing and model building tasks.

Why Pipelines Matter:

@ Streamlined Workflow: Automates the flow from data preprocessing to
model training.

@ Reproducibility: Ensures that results can be reproduced consistently.

@ Error Reduction: Minimizes the chance of human errors in the model
building process.
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