Introduction to Machine Learning

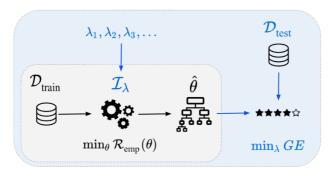
Hyperparameter Tuning In a Nutshell

Learning goals

- Understand the main idea behind tuning,
- fulfilling the untouched-test set principle via nested resampling,
- and pipelines

WHAT IS TUNING?

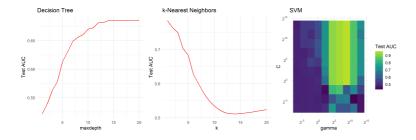
- Tuning is the process of selecting the best hyperparameters, denoted as λ, for a machine learning model.
- Hyperparameters are the parameters of the learner (versus model parameters θ).
- Consider a guitar analogy: Hyperparameters are akin to the tuning pegs. Learning the best parameters $\hat{\theta}$ playing the guitar is a separate process that depends on tuning.



× × ×

WHY TUNING MATTERS

- Just like a guitar won't perform well when out-of-tune, properly tuning a learner can drastically improve the resulting model performance.
- Tuning helps find a balance between underfitting and overfitting.

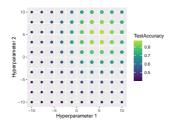


Comparing AUCs of different values for hyperparameters maxdepth, k, gamma, and C

HOW HARD COULD IT BE?

- Very difficult: There are lots of different configurations to choose from, known as the hyperparameter space, denoted by Λ (analogous to Θ).
- Black box: If one opts for a configuration $\lambda \in \Lambda$, how can its performance be measured (and compared)?
- \Rightarrow Well-thought-out **Black-Box Optimization Techniques** are needed.

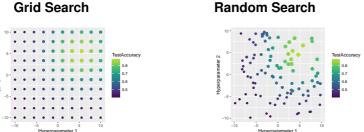
× < 0 × × ×



Exponential growth of Λ : For two discrete hyperparameters with each 10 possible values, $10 \cdot 10 = 100$ configurations can be evaluated

NAÏVE APPROACHES

Goal: Find a best configuration $\lambda^* \in \arg \min \widehat{GE}(\mathcal{I}, \rho, \lambda)$ $\lambda \in \Lambda$ \Rightarrow Tuners τ , e.g., Grid Search and Random Search, output a λ^*



Random Search

Sophisticated techniques, based on assumptions about the objective function, search for optimal solutions more efficiently.

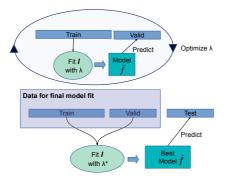
Х

ХХ

UNTOUCHED-TEST-SET PRINCIPLE

We've found a $\lambda^* \in \Lambda.$ How well does it perform?

- **Careful:** We cannot use the same data for both tuning and performance estimation, as this would lead to (optimistically) biased performance estimates!
- To obtain an unbiased $\widehat{\mathrm{GE}},$ we need an untouched test set:

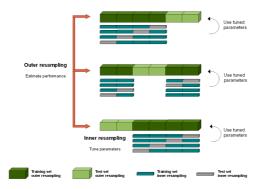


× 0 0 × 0 × ×

NESTED RESAMPLING

To decrease variance of the $\widehat{\operatorname{GE}},$ Nested Resampling is used:

 Just as we generalized holdout splitting to resampling, we generalize the three-way split to nested resampling (as we first have to find λ*):



PIPELINES IN MACHINE LEARNING

Pipelines are like the assembly lines in machine learning. They automate the sequence of data processing and model building tasks.

Why Pipelines Matter:

- Streamlined Workflow: Automates the flow from data preprocessing to model training.
- Reproducibility: Ensures that results can be reproduced consistently.
- Error Reduction: Minimizes the chance of human errors in the model building process.

× × ×