
Introduction to Machine Learning

Hyperparameter Tuning
Advanced Tuning Techniques
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Learning goals
Basic idea of evolutionary algorithms

and Bayesian Optimization

and hyperband



HPO – MANY APPROACHES

Evolutionary algorithms

Bayesian / model-based optimization

Multi-fidelity optimization, e.g. Hyperband
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HPO methods can be characterized by:

how the exploration vs. exploitation trade-off is handled

how the inference vs. search trade-off is handled

Further aspects: Parallelizability, local vs. global behavior, handling of
noisy observations, multifidelity and search space complexity.
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EVOLUTIONARY STRATEGIES
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Are a class of stochastic population-based optimization methods inspired by the
concepts of biological evolution

Are applicable to HPO since they do not require gradients

Mutation is the (randomized) change of one or a few HP values in a configuration.

Crossover creates a new HPC by (randomly) mixing the values of two other
configurations.
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BAYESIAN OPTIMIZATION

BO sequentially iterates:

1 Approximate λ 7→ c(λ)
by (nonlin) regression
model ĉ(λ), from
evaluated configurations
(archive)

2 Propose candidates via
optimizing an acquisition
function that is based on
the surrogate ĉ(λ)

3 Evaluate candidate(s)
proposed in 2, then go to 1

Important trade-off: Exploration (evaluate candidates in
under-explored areas) vs. exploitation (search near promising areas)
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BAYESIAN OPTIMIZATION

Surrogate Model:

Probabilistic modeling of
C(λ) ∼ (ĉ(λ), σ̂(λ)) with
posterior mean ĉ(λ) and
uncertainty σ̂(λ).

Typical choices for numeric
spaces are Gaussian
Processes; random forests
for mixed spaces

Acquisition Function:

Balance exploration (high σ̂) vs. exploitation (low ĉ).

Lower confidence bound (LCB): a(λ) = ĉ(λ)− κ · σ̂(λ)
Expected improvement (EI): a(λ) = E [max {cmin − C(λ), 0}]
where (cmin is best cost value from archive)

Optimizing a(λ) is still difficult, but cheap(er)
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected

improvement (EI) criterion. The point that maximizes the EI is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected

improvement (EI) criterion. The point that maximizes the EI is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected

improvement (EI) criterion. The point that maximizes the EI is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected

improvement (EI) criterion. The point that maximizes the EI is proposed (green point).
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BAYESIAN OPTIMIZATION / 2

Since we use the sequentially updated surrogate model predictions of
performance to propose new configurations, we are guided to
“interesting” regions of Λ and avoid irrelevant evaluations:
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Figure: Tuning complexity and minimal node size for splits for CART on the titanic

data (10-fold CV maximizing accuracy).
Left panel: BO, 50 configurations; right panel: random search, 50 iterations.
Top panel: one run (initial design of BO is white); bottom panel: mean ± std of 10 runs.
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BAYESIAN OPTIMIZATION / 3
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MULTIFIDELITY OPTIMIZATION

Prerequiste: Fidelity HP λfid, i.e., a component of λ, which
influences the computational cost of the fitting procedure in a
monotonically increasing manner

Methods of multifidelity optimization in HPO are all tuning
approaches that can efficiently handle a I with a HP λfid

The lower we set λfid, the more points we can explore in our
search space, albeit with much less reliable information w.r.t. their
true performance.

We assume to know box-constraints of λfid, so λfid ∈ [λlowfid , λuppfid ],
where the upper limit implies the highest fidelity returning values
closest to the true objective value at the highest computational
cost.
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SUCCESSIVE HALVING

Races down set of HPCs to the best

Idea: Discard bad configurations
early

Train HPCs with fraction of full
budget (SGD epochs, training set
size); the control param for this is
called multi-fidelity HP

Continue with better 1/η fraction of
HPCs (w.r.t ĜE); with η times budget
(usually η = 2, 3)

Repeat until budget depleted or
single HPC remains
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MULTIFIDELITY OPTIMIZATION – HYPERBAND

Problem with SH

Good HPCs could be killed off too early,
depends on evaluation schedule

Solution: Hyperband

Repeat SH with different start budgets λ
[0]
fid

and initial number of HPCs p[0]

Each SH run is called bracket

Each bracket consumes ca. the same budget

For η = 4

bracket 3
t λ

[t]
fid p[t]

3

0 1 82
1 4 20
2 16 5
3 64 1

bracket 2
t λ

[t]
fid p[t]

2

0 4 27
1 16 6
2 64 1

bracket 1
t λ

[t]
fid p[t]

1

0 16 10
1 64 2

bracket 0
t λ

[t]
fid p[t]

0

0 64 5

© Introduction to Machine Learning – 10 / 11



MORE TUNING ALGORITHMS:

Other advanced techniques besides model-based optimization and the
hyperband algorithm are:

Stochastic local search, e.g., simulated annealing

Genetic algorithms / CMAES

Iterated F-Racing

Many more . . .

For more information see Hyperparameter Optimization: Foundations,
Algorithms, Best Practices and Open Challenges, Bischl (2021)
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