Introduction to Machine Learning

Hyperparameter Tuning
Advanced Tuning Techniques
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HPO - MANY APPROACHES

@ Evolutionary algorithms
@ Bayesian / model-based optimization
@ Multi-fidelity optimization, e.g. Hyperband
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HPO methods can be characterized by:
@ how the exploration vs. exploitation trade-off is handled
@ how the inference vs. search trade-off is handled

Further aspects: Parallelizability, local vs. global behavior, handling of
noisy observations, multifidelity and search space complexity.
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EVOLUTIONARY STRATEGIES
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@ Are a class of stochastic population-based optimization methods inspired by the
concepts of biological evolution

@ Are applicable to HPO since they do not require gradients
@ Mutation is the (randomized) change of one or a few HP values in a configuration.

@ Crossover creates a new HPC by (randomly) mixing the values of two other
configurations.
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BAYESIAN OPTIMIZATION

BO sequentially iterates:

© Approximate A — c(\)
by (nonlin) regression
model ¢(\), from

- - True function

Swrrogate
Uncertainty
Acquisition

evaluated configurations \ -
(archive) P st

© Propose candidates via
optimizing an acquisition
function that is based on 3
the surrogate ¢()

© Evaluate candidate(s)

proposed in 2, then go to 1
Important trade-off: Exploration (evaluate candidates in

under-explored areas) vs. exploitation (search near promising areas)
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BAYESIAN OPTIMIZATION

Surrogate Model:

@ Probabilistic modeling of
C(A) ~ (e(A),5(N)) with
posterior mean ¢(\) and
uncertainty ().

@ Typical choices for numeric
spaces are Gaussian
Processes; random forests

for mixed spaces
Acquisition Function:
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@ Balance exploration (high &) vs. exploitation (low ¢).
a(A) =¢(A\) —k-6(N)

@ Lower confidence bound (LCB):

@ Expected improvement (El):  a(A) = IE [max{cmin — C(A),0}]

where (cmin is best cost value from archive)
@ Optimizing a(\) is still difficult, but cheap(er)
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected
improvement (El) criterion. The point that maximizes the El is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected
improvement (El) criterion. The point that maximizes the El is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected
improvement (El) criterion. The point that maximizes the El is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected
improvement (EI) criterion. The point that maximizes the El is proposed (green point).
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BAYESIAN OPTIMIZATION /2

Since we use the sequentially updated surrogate model predictions of
performance to propose new configurations, we are guided to
“interesting” regions of A and avoid irrelevant evaluations:

Bayesian Optimization Random search

accuracy

080
079
o
077
076

minsplit
minsplit

00 o0b1 o002 003 004 005 00 o0b1 o002 003 004 005
<p

best accuracy
best accuracy

Figure: Tuning complexity and minimal node size for splits for CART on the titanic
data (10-fold CV maximizing accuracy).

Left panel: BO, 50 configurations; right panel: random search, 50 iterations.

Top panel: one run (initial design of BO is white); bottom panel: mean =+ std of 10 runs.
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BAYESIAN OPTIMIZATION /3
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MULTIFIDELITY OPTIMIZATION

Prerequiste: Fidelity HP Asg, i.€., a component of A, which
influences the computational cost of the fitting procedure in a
monotonically increasing manner

Methods of multifidelity optimization in HPO are all tuning
approaches that can efficiently handle a Z with a HP g

The lower we set \ig, the more points we can explore in our
search space, albeit with much less reliable information w.r.t. their

true performance.

We assume to know box-constraints of Asg, S0 Aig € [MI, Aih¥],

where the upper limit implies the highest fidelity returning values
closest to the true objective value at the highest computational
cost.
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SUCCESSIVE HALVING

@ Races down set of HPCs to the best ™)

@ Idea: Discard bad configurations
early

@ Train HPCs with fraction of full A
budget (SGD epochs, training set -
size); the control param for this is o
called multi-fidelity HP — — 0

@ Continue with better 1 /7 fraction of T
HPCs (w.r.t @); with 7 times budget
(usually n = 2, 3)

@ Repeat until budget depleted or
single HPC remains

T adget
12% 25% 50% 100%
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MULTIFIDELITY OPTIMIZATION — HYPERBAND

Problem with SH Forn =4
@ Good HPCs could be killed off too early,

} bracket 3
depends on evaluation schedule t Al pll
Solution: Hyperband ? l 2(2)
@ Repeat SH with different start budgets >\f[i0d] 2 16 5
and initial number of HPCs pl°] 3 64 1
@ Each SH run is called bracket t br?\c[!fet 2p[[]
fid 2
@ Each bracket consumes ca. the same budget 0 4I 27
1 16 6
2 64 1
bractket1 ,
t Af[icli PE]
0 16 10
1 64 2
brac[:tl](et 0 .
t Xid Po
0 64 5
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MORE TUNING ALGORITHMS:

Other advanced techniques besides model-based optimization and the
hyperband algorithm are:

@ Stochastic local search, e.g., simulated annealing
@ Genetic algorithms / CMAES

@ lterated F-Racing

@ Many more ...

For more information see Hyperparameter Optimization: Foundations,
Algorithms, Best Practices and Open Challenges, Bischl (2021)
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