Introduction to Machine Learning

Supervised Regression Polynomial Regression Models

Learning goals

- Learn about general form of linear model
- See how to add flexibility by using polynomials
- Understand that more flexibility is not necessarily better

INCREASING FLEXIBILITY

- Recall our definition of LM: model *y* as linear combo of features
- But: isn't that pretty **inflexible**?
- E.g., here, *y* does not seem to be a linear function of *x*...

... but relation to x³ looks pretty linear!

- Many other trafos conceivable, e.g., $sin(x_1)$, $max(0, x_2)$, $\sqrt{x_3}$, ...
- Turns out we can use LM much more **flexibly** (and: it's still linear) \rightarrow interpretation might get less straightforward, though

THE LINEAR MODEL

• Recall what we previously defined as LM:

$$
f(x) = \theta_0 + \sum_{j=1}^{p} \theta_j x_j = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p
$$
 (1)

 \times \times

- Actually, just special case of "true" LM
- **The linear model** with **basis functions** ϕ*^j* :

$$
f(\mathbf{x}) = \theta_0 + \sum_{j=1}^p \theta_j \phi_j(x_j) = \theta_0 + \theta_1 \phi_1(x_1) + \cdots + \theta_p \phi_p(x_p)
$$

• In Eq. [1,](#page-2-0) we implicitly use identity trafo: $\phi_i = id_x : x \mapsto x \quad \forall j$ \rightarrow we often say LM and imply $\phi_i = id_x$

THE LINEAR MODEL

- Are models like $f(\mathbf{x}) = \theta_0 + \theta_1 x^2$ **really linear**?
	- Certainly not in covariates:

$$
a \cdot f(x, \theta) + b \cdot f(x_*, \theta) = \theta_0(a+b) + \theta_1(ax^2 + bx_*^2)
$$

$$
\neq \theta_0 + \theta_1(ax + bx_*)^2
$$

$$
= f(ax + bx_*, \theta)
$$

Crucially, however, **linear in params**:

$$
a \cdot f(x, \theta) + b \cdot f(x, \theta^*) = a\theta_0 + b\theta_0^* + (a\theta_1 + b\theta_1^*)x^2
$$

= $f(x, a\theta + b\theta^*)$

NB: we still call design matrix **X**, incorporating possible trafos:

$$
\mathbf{X} = \begin{pmatrix} 1 & \phi_1(x_1^{(1)}) & \dots & \phi_p(x_p^{(1)}) \\ \vdots & \vdots & & \vdots \\ 1 & \phi_1(x_1^{(n)}) & \dots & \phi_p(x_p^{(n)}) \end{pmatrix}
$$

 \rightsquigarrow solution via normal equations as usual

 \times \times

POLYNOMIAL REGRESSION

- Simple & flexible choice for basis funs: *d***-polynomials**
- Idea: map x_j to (weighted) sum of its monomials up to order $d \in \mathbb{N}$

- \bullet How to estimate coefficients β_k ?
	- Both LM & polynomials **linear** in their params \rightsquigarrow merge

• E.g.,
$$
f(\mathbf{x}) = \theta_0 + \theta_1 \phi^{(d)}(\mathbf{x}) = \theta_0 + \sum_{k=1}^d \theta_{1,k} x^k
$$

\n
$$
\sim \mathbf{X} = \begin{pmatrix} 1 & x^{(1)} (x^{(1)})^2 & \dots & (x^{(1)})^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x^{(n)} (x^{(n)})^2 & \dots & (x^{(n)})^d \end{pmatrix}, \ \ \theta \in \mathbb{R}^{d+1}
$$

POLYNOMIAL REGRESSION – EXAMPLES

Univariate regression, $d \in \{1, 5\}$

 \bullet Data-generating process:

 $y = 0.5 \sin(x) + \epsilon$, $\epsilon \sim \mathcal{N}(0, 0.3^2)$

 \bullet Model:

$$
f(x) = \theta_0 + \sum_{k=1}^d \theta_{1,k} x^k
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

Bivariate regression, $d = 7$

• Data-generating process:

$$
y = 1 + 2x_1 + x_2^3 + \epsilon,
$$

$$
\epsilon \sim \mathcal{N}(0, 0.5^2)
$$

 \bullet Model:

$$
f(x) = \theta_0 + \theta_1 x_1 + \sum_{k=1}^7 \theta_{2,k} x_2^k
$$

© Introduction to Machine Learning – 5 / 7

COMPLEXITY OF POLYNOMIALS

● Higher *d* allows to learn more complex functions ⇝ richer hyp space / higher **capacity**

- Should we then simply let $d \to \infty$?
	- **No**: data contains random **noise** not part of true DGP
	- Model with overly high capacity learns all those spurious patterns \rightsquigarrow poor generalization to new data
	- Also, higher *d* can lead to oscillation esp. at bounds (Runge's phenomenon¹)

¹ Interpolation of *m* equidistant points with *d*-polynomial only well-conditioned for *d* < 2 √ *m*. Plot: 50 points, models with $d > 14$ instable (under equidistance assumption).

BIKE RENTAL EXAMPLE

- OpenML task [dailybike](https://www.openml.org/search?type=data&sort=runs&id=45103&status=active): predict rentals from weather conditions
- \bullet Hunch: non-linear effect of temperature \rightsquigarrow include with polynomial:

$$
f(\mathbf{x}) = \sum_{k=1}^{d} \theta_{\text{temperature},k} x_{\text{temperature}}^k + \theta_{\text{season}} x_{\text{season}} + \theta_{\text{humidity}} x_{\text{humidity}}
$$

Test error² confirms suspicion \rightsquigarrow minimal for $d=3$

Conclusion: flexible effects can improve fit/performance

XX

²Reliable insights about model performance only via separate test dataset not used during training (here computed via 10-fold *cross validation*). Much more on this in Evaluation chapter.