
Introduction to Machine Learning

Supervised Regression
Polynomial Regression Models
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Learning goals
Learn about general form of linear
model

See how to add flexibility by using
polynomials

Understand that more flexibility is not
necessarily better



INCREASING FLEXIBILITY

Recall our definition of LM: model y as linear combo of features

But: isn’t that pretty inflexible?

E.g., here, y does not seem to be a linear function of x ...
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... but relation to x3 looks pretty linear!

Many other trafos conceivable, e.g., sin(x1), max(0, x2),
√

x3, . . .

Turns out we can use LM much more flexibly (and: it’s still linear)
⇝ interpretation might get less straightforward, though
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THE LINEAR MODEL

Recall what we previously defined as LM:

f (x) = θ0 +

p∑
j=1

θjxj = θ0 + θ1x1 + · · ·+ θpxp (1)

Actually, just special case of "true" LM

The linear model with basis functions ϕj :

f (x) = θ0 +

p∑
j=1

θjϕj(xj) = θ0 + θ1ϕ1 (x1) + · · ·+ θpϕp (xp)

In Eq. 1, we implicitly use identity trafo: ϕj = idx : x 7→ x ∀j
⇝ we often say LM and imply ϕj = idx
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THE LINEAR MODEL

Are models like f (x) = θ0 + θ1x2 really linear?

Certainly not in covariates:

a · f (x,θ) + b · f (x∗,θ) = θ0(a + b) + θ1(ax2 + bx2
∗)

̸=θ0 + θ1(ax + bx∗)2

= f (ax + bx∗,θ)

Crucially, however, linear in params:

a · f (x,θ) + b · f (x,θ∗) = aθ0 + bθ∗0 + (aθ1 + bθ∗1 )x
2

= f (x, aθ + bθ∗)
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θ = (0.5, 0.4)⊤

θ = (1.0, 0.8)⊤

θ = (1.5, 1.2)⊤

NB: we still call design matrix X, incorporating possible trafos:

X =

 1 ϕ1(x
(1)
1 ) ... ϕp(x

(1)
p )

...
...

...
1 ϕ1(x

(n)
1 ) ... ϕp(x

(n)
p )


⇝ solution via normal equations as usual
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POLYNOMIAL REGRESSION

Simple & flexible choice for basis funs: d-polynomials
Idea: map xj to (weighted) sum of its monomials up to order d ∈ N

ϕ(d) : R→ R, xj 7→
d∑

k=1

βk xk
j
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How to estimate coefficients βk ?
Both LM & polynomials linear in their params⇝ merge
E.g., f (x) = θ0 + θ1ϕ

(d)(x) = θ0 +
∑d

k=1 θ1,k xk

⇝ X =

 1 x(1) (x(1))2 ... (x(1))d

...
...

...
...

1 x(n) (x(n))2 ... (x(n))d

 , θ ∈ Rd+1
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POLYNOMIAL REGRESSION – EXAMPLES

Univariate regression, d ∈ {1, 5}
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Data-generating process:

y = 0.5 sin(x) + ϵ,

ϵ ∼ N (0, 0.32)

Model:

f (x) = θ0 +
d∑

k=1

θ1,k xk

Bivariate regression, d = 7

Data-generating process:

y = 1 + 2x1 + x3
2 + ϵ,

ϵ ∼ N (0, 0.52)

Model:

f (x) = θ0 + θ1x1 +
7∑

k=1

θ2,k xk
2
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COMPLEXITY OF POLYNOMIALS

Higher d allows to learn more complex functions
⇝ richer hyp space / higher capacity
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Should we then simply let d → ∞?

No: data contains random noise – not part of true DGP
Model with overly high capacity learns all those spurious
patterns⇝ poor generalization to new data
Also, higher d can lead to oscillation esp. at bounds
(Runge’s phenomenon1)

1Interpolation of m equidistant points with d-polynomial only well-conditioned for d < 2
√

m.
Plot: 50 points, models with d ≥ 14 instable (under equidistance assumption).
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BIKE RENTAL EXAMPLE

OpenML task dailybike: predict rentals from weather conditions

Hunch: non-linear effect of temperature⇝ include with polynomial:

f (x) =
d∑

k=1

θtemperature,k xk
temperature + θseasonxseason + θhumidityxhumidity

Test error2 confirms suspicion⇝ minimal for d = 3

116

118

120

122

2 4 6 8

degree

er
ro

r 
(R

M
S

E
)

test

train

0

200

400

600

0.25 0.50 0.75

temperature (d = 1)

re
nt

al
s

0

200

400

600

0.25 0.50 0.75

temperature (d = 3)

re
nt

al
s

d θ0 θtemp,1 θtemp,2 θtemp,3 θsSPRING θsSUMMER θsFALL θhum test error
1 377.3 2778.2 101.0 57.0 80.1 -230.0 121.9
3 419.3 2645.8 -963.1 -430.9 71.9 75.8 56.6 -283.8 117.6

Conclusion: flexible effects can improve fit/performance

2Reliable insights about model performance only via separate test dataset not used during
training (here computed via 10-fold cross validation). Much more on this in Evaluation chapter.
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https://www.openml.org/search?type=data&sort=runs&id=45103&status=active

