
Introduction to Machine Learning

Supervised Regression
In a Nutshell

∂L/∂θ=
(y − θTx)xT=0
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Learning goals
Understand basic concept of
regressors

Understand difference between L1
and L2 Loss

Know basic idea of OLS estimator



LINEAR REGRESSION TASKS

Learn linear combination of features for predicting the target variable
Find best parameters of the model by training w.r.t. a loss function
CreditBalance = θ0 + θ1Rating + θ2Income + θ3CreditLimit

Training

Prediction
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LINEAR MODELS: L1 VS L2 LOSS
Loss can be characterized as a function of residuals r = y − f (x)
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L1 penalizes the absolute
value of residuals

L(r) = |r |
Robust to outliers

L2 penalizes the quadratic
value of residuals

L(r) = r2

Easier to optimize
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LINEAR MODELS: L1 VS L2 LOSS

L1 Loss is not differentiable in
r = 0

Optimal parameters are
computed numerically

L2 is a smooth function
hence it is differentiable
everywhere

Optimal parameters can be
computed analytically or
numerically
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LINEAR MODELS: L1 VS L2 LOSS

The parameter values of the best model depend on the loss type

L(y, f(x)) =  0 − 292 = 292
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L(y, f(x)) =  (0 − 436)2 = 190096
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θ̂L1 = 0.14 → if the Credit Limit
increases by 1$ the Credit
Balance increases by 14 Cents

θ̂L2 = 0.19 → if the Credit Limit
increases by 1$ the Credit
Balance increases by 19 Cents
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OLS ESTIMATOR
Ordinary-Least-Squares (OLS) estimator:

Analytical solution for linear models with L2 loss

Best parameters can be computed via derivation of the empirical risk

Solution: θ̂ = (X⊤X)−1X⊤y

∂L/∂θ=
(y − θTx)xT=0
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OLS ESTIMATOR

Components of OLS estimator:

X: Features + extra column for intercept

y: Label vector
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POLYNOMIAL REGRESSION

Adding polynomial terms to the linear combination leads to more flexible
regression functions

Too high degrees can lead to overfitting

Balance = θ0 + θ1Limit
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Balance = θ0 + θ1Limit + θ2Limit2
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Balance = θ0 + θ1Limit + θ2Limit2 + θ3Limit3
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