Introduction to Machine Learning

Supervised Regression In a Nutshell

× 0 0 × × ×

Learning goals

- Understand basic concept of regressors
- Understand difference between L1 and L2 Loss
- Know basic idea of OLS estimator

LINEAR REGRESSION TASKS

- Learn linear combination of features for predicting the target variable
- Find best parameters of the model by training w.r.t. a loss function *CreditBalance* = $\theta_0 + \theta_1 Rating + \theta_2 Income + \theta_3 CreditLimit$

Prediction

Rating	Income	Credit Limit	Credit Card Balance		Credit Card Balance
107	32.318	4351	?	Degreeser	482
471	88.180	5042	?	Regressor	720
512	121.218	8101	?		987

LINEAR MODELS: L1 VS L2 LOSS

Loss can be characterized as a function of residuals $r = y - f(\mathbf{x})$

- L1 penalizes the **absolute** value of residuals
- L(r) = |r|
- Robust to outliers

- L2 penalizes the quadratic value of residuals
- $L(r) = r^2$
- Easier to optimize

LINEAR MODELS: L1 VS L2 LOSS

- L1 Loss is not differentiable in r = 0
- Optimal parameters are computed numerically

- L2 is a smooth function hence it is differentiable everywhere
- Optimal parameters can be computed analytically or numerically

× × 0 × × ×

LINEAR MODELS: L1 VS L2 LOSS

The parameter values of the best model depend on the loss type

××

1000

OLS ESTIMATOR

Ordinary-Least-Squares (OLS) estimator:

- Analytical solution for linear models with L2 loss
- Best parameters can be computed via derivation of the empirical risk
- Solution: $\hat{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$

OLS ESTIMATOR

Components of OLS estimator:

- X: Features + extra column for intercept
- y: Label vector

X									
	Intercept	Rating	Income	Credit Limit					
	1	283	14.891	3606					
	1	483	106.025	6645					
	1	514	104.593	7075					

y Credit Card Balance 333 903 580 × 0 0 × × ×

POLYNOMIAL REGRESSION

- Adding polynomial terms to the linear combination leads to more flexible regression functions
- Too high degrees can lead to overfitting

× 0 0 × ×

