Introduction to Machine Learning

Supervised Regression
Linear Models with L2 Loss

Learning goals

@ Grasp the overall concept of linear
regression

@ Understand how L2 loss optimization
results in SSE-minimal model

@ Understand this as a general
template for ERM in ML



LINEAR REGRESSION

@ Idea: predict y € R as linear combination of features’:

}“/:f(x):OTx:60—|—91x1+---—|—9pxp

~ find loss-optimal params to describe relation y|x
@ Hypothesis space: H = {f(x) = 0 "x | § € RP*'}

Actually, special case of linear model, which is linear combo of basis functions of features ~+ Polynomial Regression Models
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DESIGN MATRIX

@ Mismatch: 8 € RP*'! vs x € R due to intercept term
@ Trick: pad feature vectors with leading 1, s.t.
o x—=x=(1,x,...,%)",and
0 0Tx =00 1+01x1 4+ +0pxp
@ Collect all observations in design matrix X € R (P+1)
~+ more compact: single param vector incl. intercept
@ Resulting linear model:

1 x1(1) XF(,U 6o 6’0+01x1(1)+---+€pr(,1)

9 X0 — 1 x1(2) x{,z) 04 B 0o+61 X1(2)+--~+6px,(32)
. 9 .

1 X1(n) . X(n) P 00+01X1n)+--~+0px,(,")

@ We will make use of this notation in other contexts
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EFFECT INTERPRETATION

@ Big plus of LM: immediately interpretable feature effects

@ "Marginally increasing x; by 1 unit increases y by ¢; units"
~ ceteris paribus assumption: Xy, ..., Xj—1, Xj+1, ..., Xp fixed

Call:
Im(formula = y ~ x_1, data = dt_univ)

Residuals:
Min 10 Median 30 Max
-1.18346 -0.34727 -0.08766 0.31580 1.04284

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.83727 0.11360  9.131 4.55e-12 ***
%_1 0.53521 0.08219 6.512 4.13e-08 ***

Signif. codes: @ “***" 9.@01 “**’ .61 “*’ 0.85 “.” 0.1 * " 1

Residual standard error: @.5327 on 48 degrees of freedom
Multiple R-squared: ©.469, Adjusted R-squared: 0.458
F-statistic: 42.4 on 1 and 48 DF, p-value: 4.129e-08
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MODEL FIT

@ How to determine LM fit? ~~ define risk & optimize
@ Popular: L2 loss / quadratic loss / squared error

L(y,f(x)) = (y = f(x))? or L(y,f(x)) =05 (y — f(x))?

x
3 X
XX X X
X X
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X X
x x
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X X X X
% X
x
1 0 1 2 3

@ Why penalize residuals r = y — f(x) quadratically?

e Easy to optimize (convex, differentiable)
e Theoretically appealing (connection to classical stats LM)
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LOSS PLOTS

We will often visualize loss effects like this:

L(F(x).y)

0
X1 y- f(X)

@ Dataasy ~ x @ Loss as function of residuals

?
@ Prediction hypersurface ~ strength of penalty?
~ here: line ~~ symmetric?
@ Residuals r = y — f(x) @ Highlighted: loss for
~ squares to illustrate loss residuals shown on LHS
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OPTIMIZATION

@ Resulting risk equivalent to sum of squared errors (SSE):
n . N\ 2
Remp(6) = Z (y(l) - HTX(I))
i=1

@ Consider example with n = 5 ~~ different models with varying SSE
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OPTIMIZATION

@ Resulting risk equivalent to sum of squared errors (SSE):

Remp(0) = i (y(i) - GTX(i))Z

i=1

@ Consider example with n = 5 ~~ different models with varying SSE

SSE: 16.86
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OPTIMIZATION

@ Resulting risk equivalent to sum of squared errors (SSE):
n . N\ 2
Remp(6) = Z (y(l) - HTX(I))
i=1

@ Consider example with n = 5 ~~ different models with varying SSE

SSE: 16.86 SSE: 24.29
6 6]
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OPTIMIZATION

@ Resulting risk equivalent to sum of squared errors (SSE):
n . N\ 2
Remp(6) = Z (y(l) - 9TX(I)>
i=1

@ Consider example with n = 5 ~~ different models with varying SSE

SSE: 16.86 SSE: 24.29 SSE: 10.61
6 6- 6
4 4+ 4
> 2 > 2 " > 2
0 0- 0
2 2 2
0 2 4 6 0 2 4 6 0 2 4 6
X1 X1 X1

Introduction to Machine Learning — 6/9



OPTIMIZATION

SSE: 16.86 SSE: 24.29
6- 6-
4 -
> 2 > 2 4
o- o
2 2
[ H 7 [] H 7
X X
SSE: 10.61
o
o
> 2
o
2
0 2 i

Intercept 6 | Slope 64 SSE
1.80 0.30 16.86
1.00 0.10 | 24.29
0.50 0.80 | 10.61
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OPTIMIZATION

SSE: 16.86 SSE: 24.29
o
o]
-] 2
3 7 T ) 3 3 7
x x
SSE: 10.61 SSE: 5.88
o
=2 =2 &
o o KN
loss
2d
0 2 i 6 2 i Y
X

Intercept 6y | Slope 64 SSE
1.80 0.30 16.86

1.00 0.10 | 24.29

0.50 0.80 10.61

-1.65 1.29 5.88

Instead of guessing, of course, use optimization!
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ANALYTICAL OPTIMIZATION

@ Special property of LM with L2 loss: analytical solution available

n
2
j i — ' () _ gTx(
0 c arggmln Remp(0) argemlng <y 0 x )

= argmin|ly — XHH%
0

@ Find via normal equations

00

@ Solution: ordinary-least-squares (OLS) estimator

=0

6=(X"X)""XTy
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STATISTICAL PROPERTIES

@ LM with L2 loss intimately related to classical stats LM
@ Assumptions

o xWiidforie {1,...,n}

o Homoskedastic (equivariant) Gaussian errors

y=X0 + €, e~ N(0,0%)

~~ y; conditionally independent & normal: y|X ~ A/ (X8, o2I)
e Uncorrelated features
~» multicollinearity destabilizes effect estimation
@ If assumptions hold: statistical inference applicable

e Hypothesis tests on significance of effects, incl. p-values
e Confidence & prediction intervals via student-t distribution
e Goodness-of-fit measure R? =1 —SSE / SST

é(y(’)—P)2
~» SSE = part of data variance not explained by model

Introduction to Machine Learning — 9/9

X X



