
Introduction to Machine Learning

Supervised Regression
Linear Models with L2 Loss
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Learning goals
Grasp the overall concept of linear
regression

Understand how L2 loss optimization
results in SSE-minimal model

Understand this as a general
template for ERM in ML



LINEAR REGRESSION

Idea: predict y ∈ R as linear combination of features1:

ŷ = f (x) = θ⊤x = θ0 + θ1x1 + · · ·+ θpxp

⇝ find loss-optimal params to describe relation y |x
Hypothesis space: H = {f (x) = θ⊤x | θ ∈ Rp+1}
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1
Actually, special case of linear model, which is linear combo of basis functions of features⇝ Polynomial Regression Models
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DESIGN MATRIX

Mismatch: θ ∈ Rp+1 vs x ∈ Rp due to intercept term

Trick: pad feature vectors with leading 1, s.t.

x 7→ x = (1, x1, . . . , xp)
⊤, and

θ⊤x = θ0 · 1 + θ1x1 + · · ·+ θpxp

Collect all observations in design matrix X ∈ Rn×(p+1)

⇝ more compact: single param vector incl. intercept

Resulting linear model:

ŷ = Xθ =


1 x(1)

1 ... x(1)
p

1 x(2)
1 ... x(2)

p

...
...

...
1 x(n)

1 ... x(n)
p


 θ0

θ1

...
θp

 =


θ0+θ1x(1)

1 +···+θpx(1)
p

θ0+θ1x(2)
1 +···+θpx(2)

p

...
θ0+θ1x(n)

1 +···+θpx(n)
p


We will make use of this notation in other contexts
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EFFECT INTERPRETATION

Big plus of LM: immediately interpretable feature effects

"Marginally increasing xj by 1 unit increases y by θj units"
⇝ ceteris paribus assumption: x1, . . . , xj−1, xj+1, . . . , xp fixed
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MODEL FIT

How to determine LM fit? ⇝ define risk & optimize

Popular: L2 loss / quadratic loss / squared error

L (y , f (x)) = (y − f (x))2 or L (y , f (x)) = 0.5 · (y − f (x))2
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Why penalize residuals r = y − f (x) quadratically?

Easy to optimize (convex, differentiable)
Theoretically appealing (connection to classical stats LM)
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LOSS PLOTS

We will often visualize loss effects like this:
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Data as y ∼ x1

Prediction hypersurface
⇝ here: line

Residuals r = y − f (x)
⇝ squares to illustrate loss

Loss as function of residuals
⇝ strength of penalty?
⇝ symmetric?

Highlighted: loss for
residuals shown on LHS
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OPTIMIZATION

Resulting risk equivalent to sum of squared errors (SSE):

Remp(θ) =
n∑

i=1

(
y (i) − θ⊤x(i)

)2

Consider example with n = 5⇝ different models with varying SSE
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OPTIMIZATION
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Intercept θ0 Slope θ1 SSE
1.80 0.30 16.86
1.00 0.10 24.29
0.50 0.80 10.61
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OPTIMIZATION
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SSE: 5.88

Intercept θ0 Slope θ1 SSE
1.80 0.30 16.86
1.00 0.10 24.29
0.50 0.80 10.61

-1.65 1.29 5.88

Instead of guessing, of course, use optimization!
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ANALYTICAL OPTIMIZATION

Special property of LM with L2 loss: analytical solution available

θ̂ ∈ argmin
θ

Remp(θ) = argmin
θ

n∑
i=1

(
y (i) − θ⊤x(i)

)2

= argmin
θ

∥y − Xθ∥2
2

Find via normal equations

∂Remp(θ)

∂θ
= 0

Solution: ordinary-least-squares (OLS) estimator

θ̂ = (X⊤X)−1X⊤y
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STATISTICAL PROPERTIES

LM with L2 loss intimately related to classical stats LM

Assumptions
x(i) iid for i ∈ {1, . . . , n}
Homoskedastic (equivariant) Gaussian errors

y = Xθ + ϵ, ϵ ∼ N (0, σ2I)

⇝ yi conditionally independent & normal: y|X ∼ N (Xθ, σ2I)
Uncorrelated features
⇝ multicollinearity destabilizes effect estimation

If assumptions hold: statistical inference applicable
Hypothesis tests on significance of effects, incl. p-values
Confidence & prediction intervals via student-t distribution
Goodness-of-fit measure R2 = 1 − SSE / SST︸︷︷︸

n∑
i=1

(y(i)−ȳ)2

⇝ SSE = part of data variance not explained by model
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