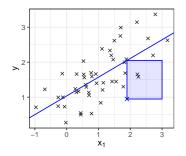
Introduction to Machine Learning

Supervised Regression Linear Models with *L*2 Loss

× 0 0 × × ×



Learning goals

- Grasp the overall concept of linear regression
- Understand how *L*2 loss optimization results in SSE-minimal model
- Understand this as a general template for ERM in ML

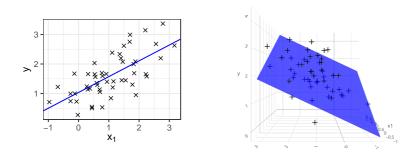
LINEAR REGRESSION

• Idea: predict $y \in \mathbb{R}$ as **linear** combination of features¹:

$$\hat{y} = f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \theta_0 + \theta_1 x_1 + \cdots + \theta_p x_p$$

 \rightsquigarrow find loss-optimal params to describe relation $y|\mathbf{x}|$

• Hypothesis space: $\mathcal{H} = \{ f(\mathbf{x}) = \boldsymbol{\theta}^\top \mathbf{x} \mid \boldsymbol{\theta} \in \mathbb{R}^{p+1} \}$



¹ Actually, special case of linear model, which is linear combo of *basis functions* of features \rightsquigarrow Polynomial Regression Models

DESIGN MATRIX

- Mismatch: $\boldsymbol{\theta} \in \mathbb{R}^{p+1}$ vs $\mathbf{x} \in \mathbb{R}^p$ due to intercept term
- Trick: pad feature vectors with leading 1, s.t.

•
$$\mathbf{x} \mapsto \mathbf{x} = (1, x_1, \dots, x_p)^\top$$
, and
• $\boldsymbol{\theta}^\top \mathbf{x} = \theta_0 \cdot 1 + \theta_1 x_1 + \dots + \theta_p x_p$

- Collect all observations in design matrix X ∈ ℝ^{n×(p+1)}
 → more compact: single param vector incl. intercept
- Resulting linear model:

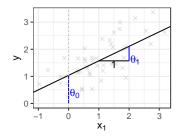
$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta} = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_p^{(1)} \\ 1 & x_1^{(2)} & \dots & x_p^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & x_1^{(n)} & \dots & x_p^{(n)} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} = \begin{pmatrix} \theta_0 + \theta_1 x_1^{(1)} + \dots + \theta_p x_p^{(1)} \\ \theta_0 + \theta_1 x_1^{(2)} + \dots + \theta_p x_p^{(2)} \\ \vdots \\ \theta_0 + \theta_1 x_1^{(n)} + \dots + \theta_p x_p^{(n)} \end{pmatrix}$$

• We will make use of this notation in other contexts

× 0 0 × × ×

EFFECT INTERPRETATION

- Big plus of LM: immediately interpretable feature effects
- "Marginally increasing x_j by 1 unit increases y by θ_j units"
 → ceteris paribus assumption: x₁,..., x_{j-1}, x_{j+1},..., x_p fixed



Call: lm(formula = y ~ x_1, data = dt_univ)

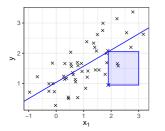
Residuals: Min 1Q Median 3Q Max -1.10346 -0.34727 -0.00766 0.31500 1.04284 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.03727 0.11360 9.131 4.55e-12 *** x_1 0.53521 0.08219 6.512 4.13e-08 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5327 on 48 degrees of freedom Multiple R-squared: 0.469, Adjusted R-squared: 0.458 F-statistic: 42.4 on 1 and 48 DF, p-value: 4.129e-08

MODEL FIT

- How to determine LM fit? ~→ define risk & optimize
- Popular: L2 loss / quadratic loss / squared error

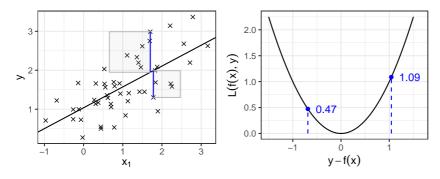
$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$$
 or $L(y, f(\mathbf{x})) = 0.5 \cdot (y - f(\mathbf{x}))^2$



- Why penalize **residuals** $r = y f(\mathbf{x})$ quadratically?
 - Easy to optimize (convex, differentiable)
 - Theoretically appealing (connection to classical stats LM)

LOSS PLOTS

We will often visualize loss effects like this:



× 0 0 × × ×

- Data as $y \sim x_1$
- Prediction hypersurface
 ~> here: line
- Residuals r = y − f(x)
 → squares to illustrate loss

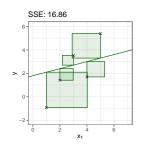
- Loss as function of residuals
 strength of penalty?
 symmetric?
- Highlighted: loss for residuals shown on LHS

• Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{emp}(\boldsymbol{ heta}) = \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{ heta}^{ op} \mathbf{x}^{(i)}
ight)^2$$

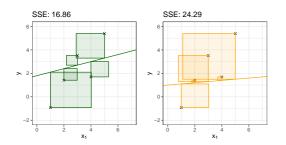
• Resulting risk equivalent to sum of squared errors (SSE):

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2$$



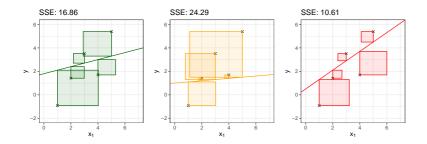
• Resulting risk equivalent to sum of squared errors (SSE):

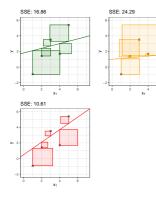
$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2$$



• Resulting risk equivalent to sum of squared errors (SSE):

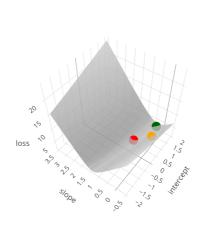
$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2$$

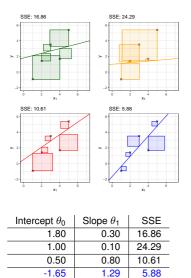


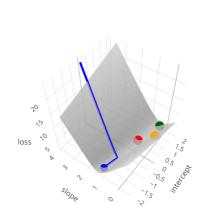


6

Intercept θ_0	Slope θ_1	SSE
1.80	0.30	16.86
1.00	0.10	24.29
0.50	0.80	10.61







Instead of guessing, of course, use optimization!

ANALYTICAL OPTIMIZATION

• Special property of LM with L2 loss: analytical solution available

$$\begin{split} \hat{\boldsymbol{\theta}} \in \mathop{\arg\min}_{\boldsymbol{\theta}} \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}) &= \mathop{\arg\min}_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^{2} \\ &= \mathop{\arg\min}_{\boldsymbol{\theta}} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_{2}^{2} \end{split}$$

• Find via normal equations

$$\frac{\partial \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0}$$

• Solution: ordinary-least-squares (OLS) estimator

$$\hat{oldsymbol{ heta}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}$$

STATISTICAL PROPERTIES

- LM with L2 loss intimately related to classical stats LM
- Assumptions
 - $\mathbf{x}^{(i)}$ iid for $i \in \{1, ..., n\}$
 - Homoskedastic (equivariant) Gaussian errors

$$\mathbf{y} = \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \boldsymbol{I})$$

 \rightsquigarrow y_i conditionally independent & normal: $\mathbf{y} | \mathbf{X} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I})$

- Uncorrelated features
 - \rightsquigarrow multicollinearity destabilizes effect estimation
- If assumptions hold: statistical inference applicable
 - Hypothesis tests on significance of effects, incl. p-values
 - Confidence & prediction intervals via student-t distribution
 - Goodness-of-fit measure $R^2 = 1 SSE / SSI$

→ SSE = part of data variance not explained by model

 $\sum_{i=1}^{n} (y^{(i)} - \overline{y})^2$