Introduction to Machine Learning

Supervised Regression Linear Models with *L*2 **Loss**

X X

Learning goals

- Grasp the overall concept of linear regression
- Understand how *L*2 loss optimization results in SSE-minimal model
- Understand this as a general template for ERM in ML

LINEAR REGRESSION

Idea: predict $y \in \mathbb{R}$ as linear combination of features¹:

$$
\hat{\mathbf{y}} = f(\mathbf{x}) = \boldsymbol{\theta}^\top \mathbf{x} = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p
$$

 \rightarrow find loss-optimal params to describe relation $y|\mathbf{x}$

Hypothesis space: $\mathcal{H} = \{f(\mathbf{x}) = \boldsymbol{\theta}^{\top}\mathbf{x} \mid \boldsymbol{\theta} \in \mathbb{R}^{p+1}\}$

1
↑ Actually, special case of linear model, which is linear combo of *basis functions* of features ↔ Polynomial Regression Models

DESIGN MATRIX

- Mismatch: $\boldsymbol{\theta} \in \mathbb{R}^{p+1}$ vs $\textbf{x} \in \mathbb{R}^{p}$ due to intercept term
- Trick: pad feature vectors with leading 1, s.t.

\n- $$
\mathbf{x} \mapsto \mathbf{x} = (1, x_1, \ldots, x_p)^\top
$$
, and
\n- $\boldsymbol{\theta}^\top \mathbf{x} = \theta_0 \cdot 1 + \theta_1 x_1 + \cdots + \theta_p x_p$
\n

- Collect all observations in **design matrix X** $\in \mathbb{R}^{n \times (p+1)}$ \rightarrow more compact: single param vector incl. intercept
- Resulting linear model:

$$
\hat{\mathbf{y}} = \mathbf{X}\theta = \begin{pmatrix} 1 & x_1^{(1)} & \dots & x_p^{(1)} \\ 1 & x_1^{(2)} & \dots & x_p^{(2)} \\ \vdots & \vdots & & \vdots \\ 1 & x_1^{(n)} & \dots & x_p^{(n)} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} = \begin{pmatrix} \theta_0 + \theta_1 x_1^{(1)} + \dots + \theta_p x_p^{(1)} \\ \theta_0 + \theta_1 x_1^{(2)} + \dots + \theta_p x_p^{(2)} \\ \vdots \\ \theta_0 + \theta_1 x_1^{(n)} + \dots + \theta_p x_p^{(n)} \end{pmatrix}
$$

We will make use of this notation in other contexts

 \times \times

EFFECT INTERPRETATION

- Big plus of LM: immediately **interpretable** feature effects
- "Marginally increasing x_i by 1 unit increases y by θ_i units" ⇝ *ceteris paribus* assumption: *x*1, . . . , *xj*−1, *xj*+1, . . . , *x^p* fixed

 \times \times

 $C₂11 +$ $lm(formula = v ~ x 1. data = dt univ)$

Residuals: Min 10 Median 30 Max $-1.10346 - 0.34727 - 0.00766$ 0.31500 1.04284 Coefficients: Estimate Std. Error t value Pr(>|t|) $(Intercept)$ 1.03727 0.11360 9.131 4.55e-12 *** $x₁$ 0.53521 0.08219 6.512 4.13e-08 ***

 \sim Signif. codes: 0'***' 0.001'**' 0.01'*' 0.05'.' 0.1'' 1

Residual standard error: 0.5327 on 48 degrees of freedom Multiple R-squared: 0.469, Adjusted R-squared: 0.458 F-statistic: 42.4 on 1 and 48 DF. p-value: 4.129e-08

MODEL FIT

- \bullet How to determine LM fit? \rightsquigarrow define risk & optimize
- Popular: *L*2 **loss** / **quadratic loss** / **squared error**

$$
L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2 \text{ or } L(y, f(\mathbf{x})) = 0.5 \cdot (y - f(\mathbf{x}))^2
$$

- Why penalize **residuals** $r = y f(x)$ quadratically?
	- Easy to optimize (convex, differentiable)
	- Theoretically appealing (connection to classical stats LM)

LOSS PLOTS

We will often visualize loss effects like this:

X $\times\overline{\times}$

- Data as *y* ∼ *x*¹
- **•** Prediction hypersurface \rightsquigarrow here: line
- **•** Residuals $r = y f(x)$ \rightsquigarrow squares to illustrate loss
- Loss as function of residuals \rightsquigarrow strength of penalty? \rightsquigarrow symmetric?
- Highlighted: loss for residuals shown on LHS

Resulting risk equivalent to **sum of squared errors (SSE)**:

$$
\mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2
$$

Resulting risk equivalent to **sum of squared errors (SSE)**:

$$
\mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2
$$

Resulting risk equivalent to **sum of squared errors (SSE)**:

$$
\mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2
$$

X **XX**

Resulting risk equivalent to **sum of squared errors (SSE)**:

$$
\mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2
$$

Instead of guessing, of course, use **optimization**!

ANALYTICAL OPTIMIZATION

Special property of LM with *L*2 loss: **analytical solution** available

$$
\hat{\theta} \in \argmin_{\theta} \mathcal{R}_{\text{emp}}(\theta) = \argmin_{\theta} \sum_{i=1}^{n} (\mathbf{y}^{(i)} - \theta^{\top} \mathbf{x}^{(i)})^2
$$

$$
= \argmin_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|_2^2
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\circ \\
\hline\n\circ \\
\hline\n\circ\n\end{array}
$$

Find via **normal equations**

$$
\frac{\partial \mathcal{R}_{\text{emp}}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0
$$

Solution: **ordinary-least-squares (OLS)** estimator

$$
\hat{\theta} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}
$$

STATISTICAL PROPERTIES

- LM with *L*2 loss intimately related to classical stats LM
- **•** Assumptions
	- $\mathbf{x}^{(i)}$ iid for $i \in \{1, \ldots, n\}$
	- **Homoskedastic** (equivariant) **Gaussian** errors

$$
\bm{y} = \bm{X}\bm{\theta} + \bm{\epsilon}, \ \bm{\epsilon} \sim \mathcal{N}(0, \sigma^2 \bm{I})
$$

⇝ *yⁱ* conditionally independent & normal: **y**|**X** ∼ N (**X**θ, σ² *I*)

- **.** Uncorrelated features
	- \rightarrow multicollinearity destabilizes effect estimation
- If assumptions hold: statistical **inference** applicable
	- Hypothesis tests on significance of effects, incl. *p*-values
	- Confidence & prediction intervals via student-*t* distribution
	- Goodness-of-fit measure $R^2 = 1 \text{SSE}$ / SST

*n*₂ (*y*^{(*i*})−*y*)²

