Introduction to Machine Learning

Supervised Classification In a Nutshell

Learning goals

- Understand basic concept of classifiers
- Know concepts of probabilistic and scoring classifier
- Know distinction between discriminant and generative approach
- Understand ideas of logistic regression and Naive Bayes

CLASSIFICATION TASKS

- Learn function that assigns categorical class labels to observations
- Each observation belongs to exactly one class
- The task can contain two (binary) or multiple (multi-class) classes

Input: Unlabeled data						Prediction		
Sex	Age	Health	Degree of Graduation	Level of Happiness		Classifier		Level of Happiness
Male	41	Fair	Bachelor	?				Not too happy
Male	35	Good	Bachelor	?				Pretty happy
Female	22	Fair	High School	?				Not too happy

-

Introduction to Machine Learning - 1 / 6

BASIC DEFINITIONS

- For every observation a model outputs the probability (probabilistic classifier) or score (scoring classifier) of each class
- In the multi-class case, the class label is usually assigned by choosing the class with the maximum score or probability
- In the binary case, a class label is assigned by choosing the class whose probability or score exceeds a threshold value c

× 0 0 × 0 × ×

BASIC DEFINITIONS / 2

Two fundamental approaches exist to construct a classifier:

- **Discriminant approach** asks "What is the best prediction for the class given these data?" (uses loss functions and empirical risk minimization)
- Generative approach asks "Which class tends to have data like these?" (models the feature distributions in each class separately)

Decision Region: Region where all observations are assigned to the same class.

Decision Boundary: Points where all classes have the same probability/score.

× < 0 × × ×

LOGISTIC REGRESSION

- Logistic regression is a **discriminant approach** for binary classification. It turns scores into probabilities with the logistic function.
- We just need to compute the probability for **one** class (usually class 1).
- If the probability exceeds a threshold value $\mathbf{c} \Rightarrow$ class 1 is predicted.

×

×х

The logistic function puts all scores in order along an s-shaped line.

Introduction to Machine Learning - 4 / 6

NAIVE BAYES

- Naive Bayes is a **generative multi-class approach**. It computes the class probability for each class based on the training data.
- It considers the data distribution on three different levels:
 - Marginal distributions $\mathbb{P}(X)$ of each feature (in the entire data set)
 - Marginal distribution $\mathbb{P}(Y)$ of classes (in the entire data set)
 - Conditional distributions $\mathbb{P}(X|Y)$ of each feature in each class

NAIVE BAYES / 2

• Example: Class probability of "not too happy" given health = "fair":

