Introduction to Machine Learning

Classification Naive Bayes

Learning goals

- Construction principle of NB
- Conditional independence assumption
- Numerical and categorical features
- Similarity to QDA, quadratic decision \bullet boundaries
- Laplace smoothing

NAIVE BAYES CLASSIFIER

Generative multiclass technique. Remember: We use Bayes' theorem and only need $p(x|y = k)$ to compute the posterior as:

$$
\pi_k(\mathbf{x}) \approx \mathbb{P}(y = k \mid \mathbf{x}) = \frac{\mathbb{P}(\mathbf{x}|y = k)\mathbb{P}(y = k)}{\mathbb{P}(\mathbf{x})} = \frac{p(\mathbf{x}|y = k)\pi_k}{\sum_{j=1}^g p(\mathbf{x}|y = j)\pi_j}
$$

NB is based on a simple **conditional independence assumption**: the features are conditionally independent given class *y*.

$$
p(\mathbf{x}|y=k) = p((x_1, x_2, ..., x_p)|y=k) = \prod_{j=1}^p p(x_j|y=k).
$$

So we only need to specify and estimate the distributions $p(x_j | y = k)$, which is considerably simpler as these are univariate.

NUMERICAL FEATURES

Use univariate Gaussians for $p(x_j | y = k)$, and estimate $(\mu_{kj}, \sigma_{kj}^2)$. Because of $p(\mathbf{x}|y = k) = \prod^p p(y)$ *j*=1 $\rho(\textit{x}_{\textit{j}} | \textit{y} = \textit{k})$, joint conditional density is Gaussian with diagonal, non-isotropic covariances, and different across

classes, so **QDA with diagonal covariances**.

X X

Note: In the above plot the data violates the NB assumption.

NB: CATEGORICAL FEATURES

We use a categorical distribution for $p\!\left(x_j\middle\vert y = k\right)$ and estimate the probabilities p_{kim} that, in class k , our *j*-th feature has value m , $x_i = m$, simply by counting frequencies.

$$
p(x_j|y=k)=\prod_m p_{kjm}^{[x_j=m]}
$$

Because of the simple conditional independence structure, it is also very easy to deal with mixed numerical / categorical feature spaces.

 \overline{x}

LAPLACE SMOOTHING

If a given class and feature value never occur together in the training data, then the frequency-based probability estimate will be zero, e.g.: $\rho_{\sf no,\,class,\,1st}^{[\chi_{class}=1st]}=0$ (everyone from 1st class survived in the previous table)

This is problematic because it will wipe out all information in the other probabilities when they are multiplied!

$$
\begin{array}{c}\n\sqrt{10} \\
\times \\
\sqrt{10} \\
\hline\n\end{array}
$$

$$
\pi_{\text{no}}(\text{class} = 1 \text{st}, \text{sex} = \text{male}) = \frac{\hat{p}(x_{\text{class}}|y = \text{no}) \cdot \hat{p}(x_{\text{sex}}|y = \text{no}) \cdot \hat{\pi}_{\text{no}}}{\sum_{j=1}^{g} \hat{p}(\text{class} = 1 \text{st}, \text{sex} = \text{male}|y = j)\hat{\pi}_{j}} = 0
$$

LAPLACE SMOOTHING

A simple numerical correction is to set these zero probabilities to a small value to regularize against this case.

- Add constant $\alpha > 0$ (e.g., $\alpha = 1$).
- \bullet For a categorical feature x_i with M_i possible values:

$$
p_{kjm}^{[x_j=m]} = \frac{n_{kjm} + \alpha}{n_k + \alpha M_j} \quad \left(\text{instead of } p_{kjm}^{[x_j=m]} = \frac{n_{kjm}}{n_k}\right)
$$

where:

- n_{kim} : count of $x_i = m$ in class k ,
- n_k : total counts in class k ,
- *Mj* : number of possible distinct values of *x^j* .

This ensures that our posterior probabilities are non-zero due to such effects, preserving the influence of all features in the model.

NAIVE BAYES: APPLICATION AS SPAM FILTER

- In the late 90s, NB became popular for e-mail spam detection
- Word counts were used as features to detect spam mails
- Independence assumption implies: occurrence of two words in mail is not correlated, this is often wrong; "viagra" more likely to occur in context with "buy"...
- In practice: often still good performance

Benchmarking QDA, NB and LDA on spam:

