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NAIVE BAYES CLASSIFIER

Generative multiclass technique. Remember: We use Bayes’ theorem
and only need p(x|y = k) to compute the posterior as:

πk(x) ≈ P(y = k | x) =
P(x|y = k)P(y = k)

P(x)
=

p(x|y = k)πk
g∑

j=1
p(x|y = j)πj

NB is based on a simple conditional independence assumption:
the features are conditionally independent given class y .

p(x|y = k) = p((x1, x2, ..., xp)|y = k) =
p∏

j=1

p(xj |y = k).

So we only need to specify and estimate the distributions p(xj |y = k),
which is considerably simpler as these are univariate.
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NUMERICAL FEATURES

Use univariate Gaussians for p(xj |y = k), and estimate (µkj , σ
2
kj).

Because of p(x|y = k) =
p∏

j=1
p(xj |y = k), joint conditional density is

Gaussian with diagonal, non-isotropic covariances, and different across
classes, so QDA with diagonal covariances.

Note: In the above plot the data violates the NB assumption.
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NB: CATEGORICAL FEATURES

We use a categorical distribution for p(xj |y = k) and estimate the
probabilities pkjm that, in class k , our j-th feature has value m, xj = m,
simply by counting frequencies.

p(xj |y = k) =
∏
m

p[xj=m]
kjm

Because of the simple conditional independence structure, it is also
very easy to deal with mixed numerical / categorical feature spaces.
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LAPLACE SMOOTHING
If a given class and feature value never occur together in the training data,
then the frequency-based probability estimate will be zero, e.g.:
p[xclass=1st]

no, class, 1st = 0 (everyone from 1st class survived in the previous table)

This is problematic because it will wipe out all information in the other
probabilities when they are multiplied!

πno(class = 1st, sex = male) =
p̂(xclass|y = no) · p̂(xsex |y = no) · π̂no

g∑
j=1

p̂(class = 1st, sex = male|y = j)π̂j

= 0
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LAPLACE SMOOTHING

A simple numerical correction is to set these zero probabilities to a
small value to regularize against this case.

Add constant α > 0 (e.g., α = 1).

For a categorical feature xj with Mj possible values:

p[xj=m]
kjm =

nkjm + α

nk + αMj

(
instead of p[xj=m]

kjm =
nkjm

nk

)
where:

nkjm: count of xj = m in class k ,
nk : total counts in class k ,
Mj : number of possible distinct values of xj .

This ensures that our posterior probabilities are non-zero due to such
effects, preserving the influence of all features in the model.
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NAIVE BAYES: APPLICATION AS SPAM FILTER

In the late 90s, NB became popular for e-mail spam detection

Word counts were used as features to detect spam mails

Independence assumption implies: occurrence of two words in
mail is not correlated, this is often wrong;
"viagra" more likely to occur in context with "buy"...

In practice: often still good performance

Benchmarking QDA, NB and LDA on spam:
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