Introduction to Machine Learning

Classification
Logistic Regression

)

Learning goals
@ Hypothesis space of LR
-3 @ Log-Loss derivation

probability
o o
3 i
a o

o
o
o

@ Intuition for loss
000 S=0-Enee? @ LR as linear classifier

-15 -10 5 0 5 10

X X



MOTIVATION

@ Let’s build a discriminant approach, for binary classification, as a
probabilistic classifier 7(x | 0)

@ We encode y € {0,1} and use ERM:

n
g Rars(0) = argmn 3L (. (x710))

@ We want to “copy” over ideas from linear regression

@ In the above, our model structure should be “mainly” linear and we
need a loss function
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DIRECT LINEAR MODEL FOR PROBABILITIES

We could directly use an LM to model r(x | 8) = 6" x.
And use L2 loss in ERM.
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But: This obviously will result in predicted probabilities 7 (x | ) ¢ [0, 1]!
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HYPOTHESIS SPACE OF LR

To avoid this, logistic regression “squashes” the estimated linear scores
6" x to [0, 1] through the logistic function s:

. exp (HTX) B 1
C1+exp(0'x)  1+exp(—0Tx)

(x| 0) =5 <9Tx) = s(f(x))
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= Hypothesis space of LR:

H={r 2 —>[01]|r(x|6) =s(6Tx) |6 € R*'}
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LOGISTIC FUNCTION

: _ _ _exp(fo+f) i
Intercept 6y shifts m = s(6p + f) = Trexp(fo 17y horizontally
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THE LOGIT

The inverse s~ '(7) = log (ﬁ) where 7 is a probability is called logit
(also called log odds since it is equal to the logarithm of the odds )

@ Positive logits indicate probabilities > 0.5 and vice versa
@ E.g.:if p=0.75, odds are 3 : 1 and logit is log(3) ~ 1.1
@ Features x act linearly on logits, controlled by coefficients :

s (n(x)) = log (%) =0"x
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DERIVING LOG-LOSS

We need to find a suitable loss function for ERM. We look at likelihood
which multiplies up 7 (x() | @) for positive examples, and
1 — 7 (x() | 9) for negative.

co)= ] 7r<x(i)|0> I1 (1—7r(x<’)ya))
i with y()=1 i with y()=0

We can now cleverly combine the 2 cases by using exponents
(note that only one of the 2 factors is not 1 and “active”):

1T (x0 10)" (1 (x0 1 0)) "
£(6) Ew(x |0) (1 7r<x \9))
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DERIVING LOG-LOSS /2

Taking the log to convert products into sums: X
0(6) = log L(6 Z log ( ( ) - (1 - <x(f) | 9))1_”0) X

=32 (s (410 + (1) 14 19)) XX

Since we want to minimize the risk, we work with the negative ¢(8):

o) = Z YO log (x (x16))~ (1 = ) log (1 — = (x| )

1=
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BERNOULLI/LOG LOSS

The resulting loss
L(y,m) = —ylog(m) — (1 — y)log(1 — )

is called Bernoulli, binomial, log or cross-entropy loss
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@ Penalizes confidently wrong predictions heavily
@ Is used for many other classifiers, e.g., in NNs or boosting
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LOGISTIC REGRESSION IN 2D

LR is a linear classifier, as 7(x | ) = s (6 "x) and s is isotonic.
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OPTIMIZATION

@ Log-Loss is convex, under regularity conditions LR has a unique
solution (because of its linear structure), but not an analytical one

@ To fit LR we use numerical optimization, e.g., Newton-Raphson

@ If data is linearly separable, the optimization problem is unbounded
and we would not find a solution; way out is regularization

@ Why not use least squares on 7(x) = s(f(x))?
Answer: ERM problem is not convex anymore :(

@ We can also write the ERM as

argen(;in Remp(0) = arge”(;i" ; L (y(’), f (x(i) | 0))

With f(x | @) = 8"x and L(y, f) = —yf + log(1 + exp(f))

This combines the sigmoid with the loss and shows a convex loss
directly on a linear function
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