
Introduction to Machine Learning

Classification
Logistic Regression

Learning goals
Hypothesis space of LR

Log-Loss derivation

Intuition for loss

LR as linear classifier

MOTIVATION

Let’s build a discriminant approach, for binary classification, as a
probabilistic classifier π(x | θ)
We encode y ∈ {0, 1} and use ERM:

argmin
θ∈Θ

Remp(θ) = argmin
θ∈Θ

n∑
i=1

L
(

y (i), π
(

x(i) | θ
))

We want to “copy” over ideas from linear regression

In the above, our model structure should be “mainly” linear and we
need a loss function

© Introduction to Machine Learning – 1 / 10

DIRECT LINEAR MODEL FOR PROBABILITIES

We could directly use an LM to model π(x | θ) = θ⊤x.
And use L2 loss in ERM.

But: This obviously will result in predicted probabilities π(x | θ) ̸∈ [0, 1]!

© Introduction to Machine Learning – 2 / 10

HYPOTHESIS SPACE OF LR

To avoid this, logistic regression “squashes” the estimated linear scores
θ⊤x to [0, 1] through the logistic function s:

π(x | θ) =
exp

(
θ⊤x

)
1 + exp (θ⊤x)

=
1

1 + exp (−θ⊤x)
= s

(
θ⊤x

)
= s(f (x))

⇒ Hypothesis space of LR:

H =
{
π : X → [0, 1] | π(x | θ) = s(θ⊤x) | θ ∈ Rp+1

}
© Introduction to Machine Learning – 3 / 10

LOGISTIC FUNCTION

Intercept θ0 shifts π = s(θ0 + f) = exp(θ0+f)
1+exp(θ0+f) horizontally

Scaling f like s(αf) = exp(αf)
1+exp(αf) controls slope and direction

© Introduction to Machine Learning – 4 / 10

THE LOGIT

The inverse s−1(π) = log
(

π
1−π

)
where π is a probability is called logit

(also called log odds since it is equal to the logarithm of the odds π
1−π)

Positive logits indicate probabilities > 0.5 and vice versa

E.g.: if p = 0.75, odds are 3 : 1 and logit is log(3) ≈ 1.1

Features x act linearly on logits, controlled by coefficients θ:

s−1(π(x)) = log

(
π(x)

1 − π(x)

)
= θT x

© Introduction to Machine Learning – 5 / 10

DERIVING LOG-LOSS

We need to find a suitable loss function for ERM. We look at likelihood
which multiplies up π

(
x(i) | θ

)
for positive examples, and

1 − π
(
x(i) | θ

)
for negative.

L(θ) =
∏

i with y(i)=1

π
(

x(i) | θ
) ∏

i with y(i)=0

(1 − π
(

x(i) | θ
)
)

We can now cleverly combine the 2 cases by using exponents
(note that only one of the 2 factors is not 1 and “active”):

L(θ) =
n∏

i=1

π
(

x(i) | θ
)y(i) (

1 − π
(

x(i) | θ
))1−y(i)

© Introduction to Machine Learning – 6 / 10

DERIVING LOG-LOSS / 2

Taking the log to convert products into sums:

ℓ(θ) = logL(θ) =
n∑

i=1

log

(
π
(

x(i) | θ
)y(i) (

1 − π
(

x(i) | θ
))1−y(i))

=
n∑

i=1

y (i) log
(
π
(

x(i) | θ
))

+
(

1 − y (i)
)
log

(
1 − π

(
x(i) | θ

))
Since we want to minimize the risk, we work with the negative ℓ(θ):

−ℓ(θ) =
n∑

i=1

−y (i) log
(
π
(

x(i) | θ
))

−
(

1 − y (i)
)
log

(
1 − π

(
x(i) | θ

))

© Introduction to Machine Learning – 7 / 10

BERNOULLI / LOG LOSS

The resulting loss

L (y , π) = −y log(π)− (1 − y) log(1 − π)

is called Bernoulli, binomial, log or cross-entropy loss

Penalizes confidently wrong predictions heavily

Is used for many other classifiers, e.g., in NNs or boosting

© Introduction to Machine Learning – 8 / 10

LOGISTIC REGRESSION IN 2D

LR is a linear classifier, as π(x | θ) = s
(
θ⊤x

)
and s is isotonic.

© Introduction to Machine Learning – 9 / 10

OPTIMIZATION

Log-Loss is convex, under regularity conditions LR has a unique
solution (because of its linear structure), but not an analytical one

To fit LR we use numerical optimization, e.g., Newton-Raphson

If data is linearly separable, the optimization problem is unbounded
and we would not find a solution; way out is regularization

Why not use least squares on π(x) = s(f (x))?
Answer: ERM problem is not convex anymore :(

We can also write the ERM as

argmin
θ∈Θ

Remp(θ) = argmin
θ∈Θ

n∑
i=1

L
(

y (i), f
(

x(i) | θ
))

With f (x | θ) = θT x and L (y , f) = −yf + log(1 + exp(f))

This combines the sigmoid with the loss and shows a convex loss
directly on a linear function

© Introduction to Machine Learning – 10 / 10

