Introduction to Machine Learning

Classification Logistic Regression

X \times \times

Learning goals

- **•** Hypothesis space of LR
- **•** Log-Loss derivation
- Intuition for loss \bullet
- **O** LR as linear classifier

MOTIVATION

- Let's build a **discriminant** approach, for binary classification, as a probabilistic classifier $\pi(\mathbf{x} \mid \boldsymbol{\theta})$
- \bullet We encode $y \in \{0, 1\}$ and use ERM:

$$
\argmin_{\theta \in \Theta} \mathcal{R}_{\text{emp}}(\theta) = \argmin_{\theta \in \Theta} \sum_{i=1}^{n} L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \theta\right)\right)
$$

- We want to "copy" over ideas from linear regression
- In the above, our model structure should be "mainly" linear and we need a loss function

DIRECT LINEAR MODEL FOR PROBABILITIES

We could directly use an LM to model $\pi(\textbf{x} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top}\textbf{x}.$ And use L2 loss in ERM.

But: This obviously will result in predicted probabilities $\pi(\mathbf{x} \mid \boldsymbol{\theta}) \notin [0, 1]!$

HYPOTHESIS SPACE OF LR

To avoid this, logistic regression "squashes" the estimated linear scores $\boldsymbol{\theta}^\top \textbf{x}$ to $[0,1]$ through the **logistic function** s :

$$
\pi(\mathbf{x} \mid \boldsymbol{\theta}) = \frac{\exp\left(\boldsymbol{\theta}^{\top}\mathbf{x}\right)}{1 + \exp\left(\boldsymbol{\theta}^{\top}\mathbf{x}\right)} = \frac{1}{1 + \exp\left(-\boldsymbol{\theta}^{\top}\mathbf{x}\right)} = s\left(\boldsymbol{\theta}^{\top}\mathbf{x}\right) = s(f(\mathbf{x}))
$$

X \times \times

⇒ **Hypothesis space** of LR:

$$
\mathcal{H} = \left\{ \pi: \mathcal{X} \rightarrow \left[0,1\right] \mid \pi(\mathbf{x} \mid \boldsymbol{\theta}) = \mathsf{s}(\boldsymbol{\theta}^{\top}\mathbf{x}) \mid \boldsymbol{\theta} \in \mathbb{R}^{p+1} \right\}
$$

LOGISTIC FUNCTION

Intercept θ_0 shifts $\pi = s(\theta_0 + f) = \frac{\exp(\theta_0 + f)}{1 + \exp(\theta_0 + f)}$ horizontally $1.00 =$ 0.75 θ_0 $\sum_{0.50}$ $\begin{array}{c} 0 \\ 2 \\ -2 \end{array}$ 0.25 $0.00 -10$ -5 10 Scaling *f* like $s(\alpha f) = \frac{\exp(\alpha f)}{1+\exp(\alpha f)}$ controls slope and direction $1.00 -$ 0.75 α $\sum_{0.50}$ 0.4 . î $\frac{1}{2}$ $\frac{1}{5}$ 0.25 0.00 -10 -5 $\overline{5}$ 10 $\frac{0}{f}$

 \times \times

THE LOGIT

The inverse $s^{-1}(\pi)=\log\left(\frac{\pi}{1-\pi}\right)$ where π is a probability is called **logit** (also called **log odds** since it is equal to the logarithm of the odds $\frac{\pi}{1-\pi}$)

- \bullet Positive logits indicate probabilities > 0.5 and vice versa
- \bullet E.g.: if *p* = 0.75, odds are 3 : 1 and logit is *log*(3) ≈ 1.1
- Features **x** act linearly on logits, controlled by coefficients θ:

$$
s^{-1}(\pi(\mathbf{x})) = \log\left(\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right) = \boldsymbol{\theta}^T \mathbf{x}
$$

DERIVING LOG-LOSS

We need to find a suitable loss function for **ERM**. We look at likelihood which multiplies up $\pi\left(\mathbf{x}^{(i)}\mid\boldsymbol{\theta}\right)$ for positive examples, and $1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right)$ for negative.

$$
\mathcal{L}(\boldsymbol{\theta}) = \prod_{j \text{ with } y^{(j)} = 1} \pi \left(\mathbf{x}^{(j)} \mid \boldsymbol{\theta} \right) \prod_{j \text{ with } y^{(j)} = 0} (1 - \pi \left(\mathbf{x}^{(j)} \mid \boldsymbol{\theta} \right))
$$

 \times \times

We can now cleverly combine the 2 cases by using exponents (note that only one of the 2 factors is not 1 and "active"):

$$
\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right)^{y^{(i)}} \left(1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{1 - y^{(i)}}
$$

DERIVING LOG-LOSS / 2

Taking the log to convert products into sums:

$$
\ell(\boldsymbol{\theta}) = \log \mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \left(\pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right)^{y^{(i)}} \left(1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{1 - y^{(i)}} \right)
$$

$$
= \sum_{i=1}^{n} y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)
$$

Since we want to minimize the risk, we work with the negative $\ell(\theta)$:

$$
-\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} -y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)} | \boldsymbol{\theta}\right)\right) - \left(1 - y^{(i)}\right) \log \left(1 - \pi \left(\mathbf{x}^{(i)} | \boldsymbol{\theta}\right)\right)
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\circ \\
\hline\n\end{array}
$$

BERNOULLI / LOG LOSS

The resulting loss

$$
L(y,\pi) = -y \log(\pi) - (1-y) \log(1-\pi)
$$

is called **Bernoulli, binomial, log** or **cross-entropy** loss

 \times \times

- Penalizes confidently wrong predictions heavily
- Is used for many other classifiers, e.g., in NNs or boosting

LOGISTIC REGRESSION IN 2D

LR is a linear classifier, as $\pi(\mathbf{x} \mid \boldsymbol{\theta}) = s\left(\boldsymbol{\theta}^\top \mathbf{x}\right)$ and s is isotonic.

X X X

OPTIMIZATION

- Log-Loss is convex, under regularity conditions LR has a unique solution (because of its linear structure), but not an analytical one
- To fit LR we use numerical optimization, e.g., Newton-Raphson
- If data is linearly separable, the optimization problem is unbounded and we would not find a solution; way out is regularization
- Why not use least squares on $\pi(\mathbf{x}) = s(f(\mathbf{x}))$? Answer: ERM problem is not convex anymore :(
- We can also write the ERM as

$$
\mathop{\arg\min}\limits_{\theta \in \Theta} \mathcal{R}_{\text{emp}}(\theta) = \mathop{\arg\min}\limits_{\theta \in \Theta} \sum\limits_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \theta\right)\right)
$$

With
$$
f(\mathbf{x} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^T \mathbf{x}
$$
 and $L(y, f) = -yt + \log(1 + \exp(f))$

This combines the sigmoid with the loss and shows a convex loss directly on a linear function