Introduction to Machine Learning

Classification
Linear Classifiers
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LINEAR CLASSIFIERS

Important subclass of classification models.

Definition: If discriminant(s) f,(x) can be written as affine linear
function(s) (possibly through a rank-preserving, monotone
transformation g):

g(f(x)) = wy x + by,

we will call the classifier linear.

@ wy and by do not necessarily refer to parameters 6y, although
they often coincide; discriminant simply must be writable in an
affine-linear way

@ reasons for the transformation is that we only care about the
position of the decision boundary

Introduction to Machine Learning — 1/6

X X



LINEAR DECISION BOUNDARIES

We can also easily show that the decision boundary between classes i
and j is a hyperplane. For every x where there is a tie in scores:

fi(x) = f(x)
9(fi(x)) = 9(f(x))
w/x+b = ijx+b,-

(wi—w) x+(bi—b) = 0

This represents a hyperplane separating two classes:
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EXAMPLE: 2 CLASSES WITH CENTROIDS

@ Model binary problem with centroid i per class as "parameters

@ Don't really care how the centroids are estimated;
could use class means, but the following doesn’t depend on it

@ Classify point x by assigning it to class k of nearest centroid
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EXAMPLE: 2 CLASSES WITH CENTROIDS

Let’s calculate the decision boundary:

di = |[x—p]]? = x"x=2x" pr+pq prg = X" x=2x" patpg p2 = [|x—pa|? = b %

Where d is measured using Euclidean distance. This implies:
—2x" g + pf 1 = —2x " pip + g pro
Which simplifies to:
2x " (2 — 1) = g P2 — fiq 4

Thus, it's a linear classifier!
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LINEAR SEPARABILITY

If there exists a linear classifier that perfectly separates the classes of
some dataset, the data are called linearly separable.
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FEATURE TRANSFORMATIONS

Note that linear classifiers can represent non-linear decision
boundaries in the original input space if we use derived features like
higher order interactions, polynomial features, etc.
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Here we used absolute values to find suitable derived features.
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