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LINEAR CLASSIFIERS

Important subclass of classification models.

Definition: If discriminant(s) fk(x) can be written as affine linear
function(s) (possibly through a rank-preserving, monotone
transformation g):

g(fk(x)) = w⊤
k x + bk ,

we will call the classifier linear.

wk and bk do not necessarily refer to parameters θk , although
they often coincide; discriminant simply must be writable in an
affine-linear way

reasons for the transformation is that we only care about the
position of the decision boundary
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LINEAR DECISION BOUNDARIES

We can also easily show that the decision boundary between classes i
and j is a hyperplane. For every x where there is a tie in scores:

fi(x) = fj(x)

g(fi(x)) = g(fj(x))

w⊤
i x + bi = w⊤

j x + bj

(w i − w j)
⊤ x + (bi − bj) = 0

This represents a hyperplane separating two classes:
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EXAMPLE: 2 CLASSES WITH CENTROIDS

Model binary problem with centroid µk per class as "parameters"

Don’t really care how the centroids are estimated;
could use class means, but the following doesn’t depend on it

Classify point x by assigning it to class k of nearest centroid
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EXAMPLE: 2 CLASSES WITH CENTROIDS

Let’s calculate the decision boundary:

d1 = ||x−µ1||2 = x⊤x−2x⊤µ1+µ⊤
1 µ1 = x⊤x−2x⊤µ2+µ⊤

2 µ2 = ||x−µ2||2 = d2

Where d is measured using Euclidean distance. This implies:

−2x⊤µ1 + µ⊤
1 µ1 = −2x⊤µ2 + µ⊤

2 µ2

Which simplifies to:

2x⊤(µ2 − µ1) = µ⊤
2 µ2 − µ⊤

1 µ1

Thus, it’s a linear classifier!
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LINEAR SEPARABILITY

If there exists a linear classifier that perfectly separates the classes of
some dataset, the data are called linearly separable.
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FEATURE TRANSFORMATIONS

Note that linear classifiers can represent non-linear decision
boundaries in the original input space if we use derived features like
higher order interactions, polynomial features, etc.

Here we used absolute values to find suitable derived features.
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