Introduction to Machine Learning

Classification Linear Classifiers

Learning goals

- **•** Linear classifier
- Linear decision boundaries
- **•** Linear separability

LINEAR CLASSIFIERS

Important subclass of classification models.

Definition: If discriminant(s) $f_k(\mathbf{x})$ can be written as affine linear function(s) (possibly through a rank-preserving, monotone transformation *g*):

$$
g(f_k(\mathbf{x})) = \mathbf{w}_k^{\top} \mathbf{x} + b_k,
$$

we will call the classifier **linear**.

- \bullet *w_k* and b_k do not necessarily refer to parameters θ_k , although they often coincide; discriminant simply must be writable in an affine-linear way
- reasons for the transformation is that we only care about the position of the decision boundary

LINEAR DECISION BOUNDARIES

We can also easily show that the decision boundary between classes *i* and *j* is a hyperplane. For every **x** where there is a tie in scores:

$$
f_i(\mathbf{x}) = f_j(\mathbf{x})
$$

\n
$$
g(f_i(\mathbf{x})) = g(f_j(\mathbf{x}))
$$

\n
$$
\mathbf{w}_i^{\top} \mathbf{x} + b_i = \mathbf{w}_j^{\top} \mathbf{x} + b_j
$$

\n
$$
(\mathbf{w}_i - \mathbf{w}_j)^{\top} \mathbf{x} + (b_i - b_j) = 0
$$

This represents a **hyperplane** separating two classes:

< ×

EXAMPLE: 2 CLASSES WITH CENTROIDS

- \bullet Model binary problem with centroid μ_k per class as "parameters"
- Don't really care how the centroids are estimated; could use class means, but the following doesn't depend on it
- Classify point **x** by assigning it to class *k* of nearest centroid

EXAMPLE: 2 CLASSES WITH CENTROIDS

Let's calculate the decision boundary:

$$
d_1 = ||\mathbf{x} - \boldsymbol{\mu}_1||^2 = \mathbf{x}^\top \mathbf{x} - 2\mathbf{x}^\top \boldsymbol{\mu}_1 + \boldsymbol{\mu}_1^\top \boldsymbol{\mu}_1 = \mathbf{x}^\top \mathbf{x} - 2\mathbf{x}^\top \boldsymbol{\mu}_2 + \boldsymbol{\mu}_2^\top \boldsymbol{\mu}_2 = ||\mathbf{x} - \boldsymbol{\mu}_2||^2 = d_2 \sum \mathbf{x} \mathbf{x} \mathbf{x} + \mathbf{x} \mathbf{x}
$$

Where *d* is measured using Euclidean distance. This implies:

$$
-2\mathbf{x}^\top\boldsymbol{\mu}_1+\boldsymbol{\mu}_1^\top\boldsymbol{\mu}_1=-2\mathbf{x}^\top\boldsymbol{\mu}_2+\boldsymbol{\mu}_2^\top\boldsymbol{\mu}_2
$$

Which simplifies to:

$$
2\mathbf{x}^\top(\mu_2-\mu_1)=\mu_2^\top\mu_2-\mu_1^\top\mu_1
$$

Thus, it's a linear classifier!

X

 $\times\overline{\times}$

LINEAR SEPARABILITY

If there exists a linear classifier that perfectly separates the classes of some dataset, the data are called **linearly separable**.

not linearly separable

FEATURE TRANSFORMATIONS

Note that linear classifiers can represent **non-linear** decision boundaries in the original input space if we use derived features like higher order interactions, polynomial features, etc.

Here we used absolute values to find suitable derived features.

 \sim \times