
Introduction to Machine Learning

Classification
Discriminant Analysis

Learning goals
LDA and QDA construction principle
based on generative approach

How are their parameters estimated

Linear and quadratic decision
boundaries



LINEAR DISCRIMINANT ANALYSIS
Generative approach, following Bayes’ theorem:

πk(x) ≈ P(y = k | x) =
P(x|y = k)P(y = k)

P(x)
=

p(x|y = k)πk
g∑

j=1
p(x|y = j)πj

Assume that distribution p(x|y = k) per class is multivariate Gaussian:

p(x|y = k) =
1

(2π)
p
2 |Σ| 1

2

exp

(
−1

2
(x − µk )

TΣ−1(x − µk )

)
with equal covariance structure, so Σk = Σ ∀k
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UNIVARIATE EXAMPLE

Classify a new person as male or female based on their height
(naive toy example, unrealistic in many ways)

We will compute in the true DGP, so we assume we know all distributions
and their params; we use the LDA setup

Optimal separation is located at the intersection (= decision boundary)!

© Introduction to Machine Learning – 2 / 13



UNIVARIATE EXAMPLE: EQUAL CLASS SIZES

Let’s compute posterior probability that a 172 cm tall person is male

Assuming equal class sizes, prior probs πk cancel out (since πman = πwoman):

P(y = man | x) =
p(x | y = man)

p(x | y = man) + p(x | y = woman)
=

0.0135
0.0135 + 0.088

= 0.133
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UNIVARIATE EXAMPLE: UNEQUAL CLASS SIZES

For unequal class sizes (e.g., πwoman = 2πman), the prior probs matter and
cause a shift of the decision boundary towards the smaller class

P(y = man | x) =
p(x | y = man)πman

p(x | y = man)πman + p(x | y = woman)πwoman

=
0.0135 · 1

3

0.0135 · 1
3 + 0.088 · 2

3

= 0.0712
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LDA AS LINEAR CLASSIFIER

Because of the equal covariance structure of all class-specific
Gaussians, the decision boundaries of LDA are always linear
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LDA AS LINEAR CLASSIFIER

Can easily prove this by showing that posteriors can be written as
affine-linear functions - up to rank-preserving transformation:

πk(x) =
πk · p(x|y = k)

p(x)
=

πk · p(x|y = k)
g∑

j=1
πj · p(x|y = j)

As the denominator is the same for all classes we only need to consider

πk · p(x|y = k)

and show that this can be written as a linear function of x.
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LDA AS LINEAR CLASSIFIER

πk · p(x|y = k)

∝ πk exp
(
− 1

2 xTΣ−1x− 1
2µ

T
k Σ

−1µk + xTΣ−1µk
)

= exp
(
log πk − 1

2µ
T
k Σ

−1µk + xTΣ−1µk
)
exp

(
− 1

2 xTΣ−1x
)

= exp
(
w0k + xT w k

)
exp

(
− 1

2 xTΣ−1x
)

∝ exp
(
w0k + xT w k

)
by defining w0k := log πk − 1

2µ
T
k Σ

−1µk and w k := Σ−1µk .

By finally taking the log, we can write our transformed scores as linear:

fk(x) = w0k + xT w k

The above is a little bit “lax” so lets carefully check

We left out several (pos) multiplicative constants

exp
(
− 1

2 xTΣ−1x
)

contains x but is the same for all classes

log(at + b) is still isotonic for a > 0
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QUADRATIC DISCRIMINANT ANALYSIS

Doesn’t assume equal covariances Σk per class, so generalizes LDA:

p(x|y = k) =
1

(2π)
p
2 |Σk |

1
2

exp

(
−1

2
(x − µk )

TΣ−1
k (x − µk )

)
⇒ Better data fit but requires estimation of more parameters (Σk )!
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UNIVARIATE EXAMPLE WITH QDA

Different covariance matrices lead to multiple classification rules:

x < 159.6 is being assigned to class man.

159.6 < x < 175.5 is being assigned to class woman.

x > 175.5 is being assigned to class man.

⇒ The separation function is quadratic, we learn a curved decision boundary
(in 1D a little bit weird, as we learn an interval)
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QDA DECISION BOUNDARIES

πk(x) ∝ πk · p(x|y = k)

∝ πk |Σk |−
1
2 exp(−1

2
xTΣ−1

k x − 1
2
µT

k Σ
−1
k µk + xTΣ−1

k µk )

Taking log, we get a quadratic discriminant function in x :

log πk −
1
2
log |Σk | −

1
2
µT

k Σ
−1
k µk + xTΣ−1

k µk − 1
2

xTΣ−1
k x

Allowing for curved decision boundaries:
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PARAMETER ESTIMATION

Parameters θ are estimated in a straightforward manner by:

π̂k =
nk

n
, where nk is the number of class-k observations

µ̂k =
1
nk

∑
i:y(i)=k

x(i)

Σ̂k =
1

nk − 1

∑
i:y(i)=k

(x(i) − µ̂k )(x(i) − µ̂k )
T (QDA)

Σ̂ =
1

n − g

g∑
k=1

∑
i:y(i)=k

(x(i) − µ̂k )(x(i) − µ̂k )
T (LDA)

As Σ̂k , Σ̂ are p × p matrices (for p features), estimating all Σ̂k involves
p(p+1)

2 · g parameters across g classes (vs. just p(p+1)
2 for LDA’s Σ̂)

(in addition to estimating priors and class means)
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QDA PARAMETER ESTIMATION EXAMPLE

E.g., for a simple two-class, 2-dimensional dataset:

Class 1: x1 =

(
1
2

)
, x2 =

(
2
3

)
, Class 2: x3 =

(
6
8

)
, x4 =

(
7
9

)
, x5 =

(
8
10

)

Class priors: π̂1 = n1
n = 2

5 = 0.4, π̂2 = n2
n = 3

5 = 0.6

Class means: µ̂1 = 1
2 (x1 + x2) =

(
1.5
2.5

)
, µ̂2 = 1

3 (x3 + x4 + x5) =

(
7
9

)
Class covariances:

(x1 − µ̂1)(x1 − µ̂1)
⊤ =

(
0.25 0.25
0.25 0.25

)
= (x2 − µ̂1)(x2 − µ̂1)

⊤

⇒ Σ̂1 = 1
1

((
0.25 0.25
0.25 0.25

)
+

(
0.25 0.25
0.25 0.25

))
=

(
0.5 0.5
0.5 0.5

)
(x3 − µ̂2)(x3 − µ̂2)

⊤ =

(
1 1
1 1

)
= (x5 − µ̂2)(x5 − µ̂2)

⊤,

(x4 − µ̂2)(x4 − µ̂2)
⊤ =

(
0 0
0 0

)
⇒ Σ̂2 = 1

2

((
1 1
1 1

)
+

(
0 0
0 0

)
+

(
1 1
1 1

))
=

(
1 1
1 1

)
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DISCRIMINANT ANALYSIS COMPARISON

We benchmark on simple toy data set(s)

Normally distributed data per class, but unequal cov matrices

And then increase dimensionality

We might assume that QDA always wins here ...

⇒ LDA might be preferable over QDA in higher dimensions!

© Introduction to Machine Learning – 13 / 13


