Introduction to Machine Learning

Classification
Basic Definitions

Learning goals
@ Basic notation

@ Hard labels vs. probabilities vs.
scores

@ Decision regions and boundaries

@ Generative vs. discriminant
approaches
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NOTATION AND TARGET ENCODING

@ In classification, we aim at predicting a discrete output

yey={C,..

with 2 < g < oo, given data D

, Cq}

@ For convenience, we often encode these classes differently

@ Binary case, g = 2: Usuallyuse ) = {0,1} or Y = {—1,+1}

@ Multiclass case, g > 3: Coulduse Y = {1,..., g}, but often use
one-hot encoding o(y), i.e., g-length vector with

ok(y) =1(y = k) € {0,1}:

ID Features Species

1 Setosa

2 Setosa

3 Versicolor
4 Virginica
5 Setosa

one-hot
encoding

o(Species)
(1,0,0)
(1,0,0)
(0,1,0)
(0,0,1)
(1,0,0)
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CLASSIFICATION MODELS

While for regression the model f : X — R simply maps to the
label space ) = R, classification is slightly more complicated.

We sometimes like our models to output (hard) classes, sometimes
probabilities, sometimes class scores. The latter 2 are vectors.

The most basic / common form is the score-based classifier, this is
why we defined models already as f : X — RRY.

To minimize confusion, we distinguish between all 3 in notation:
h(x) for hard labels, 7(x) for probabilities and f(x) for scores

Why all of that and not only hard labels? a) Scores / probabilities
are more informative than hard class predictions; b) from an
optimization perspective, it is much (!) easier to work with
continuous values.
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SCORING CLASSIFIERS

@ Construct g discriminant / scoring functions fi, ..., 7, : X — R
@ Predicted class is usually the one with max score
h(x) = arg max fi(x)
ke{1,...,9}

@ For g = 2, a single discriminant function f(x) = f;(x) — f_1(x) is
sufficient (here, it’s natural to label classes with {—1,+1} and we
used slight abuse of notation for the subscripts),
class labels are constructed by h(x) = sgn(f(x))

@ |f(x)| or |fc(x)| is loosely called “confidence”

2.5

0.7

fk(x)

predict class
with highest score

h(x) = argmax fx(x).=1
ke{1,...,g}

class k
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PROBABILISTIC CLASSIFIERS

@ Construct g probability functions

g
T,y g 1 X = [0,1], D mk(x) =1
k=1
@ Predicted class is usually the one with max probability

h(x) = arg max mx(x)
ke{1,...,9}

@ For g = 2, single 7(x) is constructed, which models the predicted
probability for the positive class (natural to encode ) = {0,1})

0.5

0.3
O e e > (0 = argmax m(x) =3
e{1,....9

1 2 3

class k
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THRESHOLDING

@ For imbalanced cases or class with costs, we might want to
deviate from the standard conversion of scores to classes

@ Introduce basic concept (for binary case) and add details later

@ Convert scores or probabilities to class outputs by thresholding:
h(x) := [m(x) > c] or h(x) := [f(x) > c] for some threshold ¢

@ Standard thresholds: ¢ = 0.5 for probabilities, ¢ = 0 for scores

obs.
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DECISION REGIONS

Set of points x where class k is predicted: O O X
Xk ={x € X : h(x) =k} x O
decision regions
s ® X X
o © ® o [ ®
e 9 e 4 O ®
o © ®
® o @ O ([
© ® o ®
(@) o () ® o )
© @

) ) (] ®)

Introduction to Machine Learning — 6/ 11



DECISION BOUNDARIES

Points in space where classes with maximal score are tied and the
corresponding hypersurfaces are called decision boundaries

{xe X :3i+#jst fi(x)=fi(x)Afi(x), fi(x) > f(x) Vk # i,j}
In binary case we can simply use the threshold:
{xe X :f(x)=rc}

¢ = 0 for scores and ¢ = 0.5 for probs is consistent with the above.

decision boundaries
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DECISION BOUNDARY EXAMPLES
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classif.log_reg on example task
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classif.naive_bayes on example task
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GENERATIVE APPROACH

Models class-conditional p(x|y = k), and employs Bayes’ theorem:

mk(X) =~ P(y = k | x) = P(x|y :IPK()XI)P(y =k) _ p(xly = k)mx

g
. P(xly = J)m
l:

Prior probs 7, = IP(y = k) can easily be estimated from training data
as relative frequencies of each class:

D Sex Age Class e

the Titanic
1 male 49 2nd no
2 female 23 st yes —/_\
3 male 32 3rd no f — _
4 male 51 2nd no 5
5 female 49 1st yes \_/
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GENERATIVE APPROACH

Decision boundary implicitly defined via the conditional distributions

feature 2

2 -1

0 1 2 3
feature 1

Examples are Naive Bayes, LDA and QDA.
NB: LDA and QDA have ‘discriminant’ in their name, but are generative!
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DISCRIMINANT APPROACH

Here we optimize the discriminant functions (or better: their
parameters) directly, usually via ERM:

n
f = arg min Remp(f) = arg min E L (y(’), f <x(’)))
fen fen
candldme\hypmheses (decision boundaries) loss landscape for By + By X, - 2.47 X, (fixed B, = -2.47) final hypothesis
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Examples are neural networks, logistic regression and SVMs
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