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NOTATION AND TARGET ENCODING

In classification, we aim at predicting a discrete output

y ∈ Y = {C1, ...,Cg}

with 2 ≤ g < ∞, given data D
For convenience, we often encode these classes differently

Binary case, g = 2: Usually use Y = {0, 1} or Y = {−1,+1}
Multiclass case, g ≥ 3: Could use Y = {1, . . . , g}, but often use
one-hot encoding o(y), i.e., g-length vector with
ok(y) = I(y = k) ∈ {0, 1}:
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CLASSIFICATION MODELS

While for regression the model f : X → R simply maps to the
label space Y = R, classification is slightly more complicated.

We sometimes like our models to output (hard) classes, sometimes
probabilities, sometimes class scores. The latter 2 are vectors.

The most basic / common form is the score-based classifier, this is
why we defined models already as f : X → Rg .

To minimize confusion, we distinguish between all 3 in notation:
h(x) for hard labels, π(x) for probabilities and f (x) for scores

Why all of that and not only hard labels? a) Scores / probabilities
are more informative than hard class predictions; b) from an
optimization perspective, it is much (!) easier to work with
continuous values.
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SCORING CLASSIFIERS

Construct g discriminant / scoring functions f1, ..., fg : X → R

Predicted class is usually the one with max score

h(x) = argmax
k∈{1,...,g}

fk(x)

For g = 2, a single discriminant function f (x) = f1(x)− f−1(x) is
sufficient (here, it’s natural to label classes with {−1,+1} and we
used slight abuse of notation for the subscripts),
class labels are constructed by h(x) = sgn(f (x))
|f (x)| or |fk(x)| is loosely called “confidence”
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PROBABILISTIC CLASSIFIERS

Construct g probability functions

π1, ..., πg : X → [0, 1],
g∑

k=1
πk(x) = 1

Predicted class is usually the one with max probability

h(x) = argmax
k∈{1,...,g}

πk(x)

For g = 2, single π(x) is constructed, which models the predicted
probability for the positive class (natural to encode Y = {0, 1})
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THRESHOLDING

For imbalanced cases or class with costs, we might want to
deviate from the standard conversion of scores to classes

Introduce basic concept (for binary case) and add details later

Convert scores or probabilities to class outputs by thresholding:

h(x) := [π(x) ≥ c] or h(x) := [f (x) ≥ c] for some threshold c

Standard thresholds: c = 0.5 for probabilities, c = 0 for scores
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DECISION REGIONS

Set of points x where class k is predicted:

Xk = {x ∈ X : h(x) = k}
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DECISION BOUNDARIES

Points in space where classes with maximal score are tied and the
corresponding hypersurfaces are called decision boundaries

{x ∈ X : ∃ i ̸= j s.t. fi(x) = fj(x) ∧ fi(x), fj(x) ≥ fk(x) ∀k ̸= i, j}

In binary case we can simply use the threshold:

{x ∈ X : f (x) = c}

c = 0 for scores and c = 0.5 for probs is consistent with the above.
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DECISION BOUNDARY EXAMPLES
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GENERATIVE APPROACH

Models class-conditional p(x|y = k), and employs Bayes’ theorem:

πk(x) ≈ P(y = k | x) =
P(x|y = k)P(y = k)

P(x)
=

p(x|y = k)πk
g∑

j=1
p(x|y = j)πj

Prior probs πk = P(y = k) can easily be estimated from training data
as relative frequencies of each class:
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GENERATIVE APPROACH

Decision boundary implicitly defined via the conditional distributions

Examples are Naive Bayes, LDA and QDA.
NB: LDA and QDA have ’discriminant’ in their name, but are generative!
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DISCRIMINANT APPROACH

Here we optimize the discriminant functions (or better: their
parameters) directly, usually via ERM:

f̂ = argmin
f∈H

Remp(f ) = argmin
f∈H

n∑
i=1

L
(

y (i), f
(

x(i)
))

Examples are neural networks, logistic regression and SVMs
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