
Introduction to Machine Learning

ML-Basics
Losses & Risk Minimization

Learning goals
Know the concept of loss

Understand the relationship between
loss and risk

Understand the relationship between
risk minimization and finding the best
model



HOW TO EVALUATE MODELS

When training a learner, we optimize over our hypothesis space, to
find the function which matches our training data best.

This means, we are looking for a function, where the predicted
output per training point is as close as possible to the observed
label.

To make this precise, we need to define now how we measure the
difference between a prediction and a ground truth label pointwise.
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LOSS

The loss function L (y , f (x)) quantifies the "quality" of the prediction
f (x) of a single observation x:

L : Y ×Rg → R.

In regression, we could use the absolute loss L (y , f (x)) = |f (x)− y |;

or the L2-loss L (y , f (x)) = (y − f (x))2:
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RISK OF A MODEL

The (theoretical) risk associated with a certain hypothesis f (x)
measured by a loss function L (y , f (x)) is the expected loss

R(f ) := Exy [L (y , f (x))] =
∫

L (y , f (x)) dPxy .

This is the average error we incur when we use f on data from Pxy .

Goal in ML: Find a hypothesis f (x) ∈ H that minimizes risk.
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RISK OF A MODEL / 2

Problem: Minimizing R(f ) over f is not feasible:

Pxy is unknown (otherwise we could use it to construct optimal
predictions).

We could estimate Pxy in non-parametric fashion from the data D,
e.g., by kernel density estimation, but this really does not scale to
higher dimensions (see “curse of dimensionality”).

We can efficiently estimate Pxy , if we place rigorous assumptions
on its distributional form, and methods like discriminant analysis
work exactly this way.

But as we have n i.i.d. data points from Pxy available we can simply
approximate the expected risk by computing it on D.
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EMPIRICAL RISK

To evaluate, how well a given function f matches our training data, we
now simply sum-up all f ’s pointwise losses.

Remp(f ) =
n∑

i=1

L
(

y (i), f
(

x(i)
))

This gives rise to the empirical risk function which allows us to
associate one quality score with each of our models, which encodes
how well our model fits our training data.

Remp : H → R
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EMPIRICAL RISK / 2

The risk can also be defined as an average loss

R̄emp(f ) =
1
n

n∑
i=1

L
(

y (i), f
(

x(i)
))

.

The factor 1
n does not make a difference in optimization, so we will

consider Remp(f ) most of the time.

Since f is usually defined by parameters θ, this becomes:

R : Rd → R

Remp(θ) =
n∑

i=1

L
(

y (i), f
(

x(i) | θ
))
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EMPIRICAL RISK MINIMIZATION

The best model is the model with the smallest risk.

If we have a finite number of models f , we could simply tabulate them
and select the best.

Model θintercept θslope Remp(θ)

f1 2 3 194.62
f2 3 2 127.12
f3 6 -1 95.81
f4 1 1.5 57.96
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EMPIRICAL RISK MINIMIZATION

But usually H is infinitely large.

Instead we can consider the risk surface w.r.t. the parameters θ.
(By this I simply mean the visualization of Remp(θ))

Remp(θ) : R
d → R.

Model θintercept θslope Remp(θ)

f1 2 3 194.62
f2 3 2 127.12
f3 6 -1 95.81
f4 1 1.5 57.96
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EMPIRICAL RISK MINIMIZATION / 2

Minimizing this surface is called empirical risk minimization (ERM).

θ̂ = argmin
θ∈Θ

Remp(θ).

Usually we do this by numerical optimization.

R : Rd → R.

Model θintercept θslope Remp(θ)

f1 2 3 194.62
f2 3 2 127.12
f3 6 -1 95.81
f4 1 1.5 57.96
f5 1.25 0.90 23.40

In a certain sense, we have now reduced the problem of learning to
numerical parameter optimization.
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