
Introduction to Machine Learning

ML-Basics
Optimization
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Learning goals
Understand how the risk function is
optimized to learn the optimal
parameters of a model

Understand the idea of gradient
descent as a basic risk optimizer



LEARNING AS PARAMETER OPTIMIZATION

We have seen, we can operationalize the search for a model f that
matches training data best, by looking for its parametrization
θ ∈ Θ with lowest empirical risk Remp(θ).

Therefore, we usually traverse the error surface downwards; often
by local search from a starting point to its minimum.
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LEARNING AS PARAMETER OPTIMIZATION / 2

The ERM optimization problem is:

θ̂ = argmin
θ∈Θ

Remp(θ).

For a (global) minimum θ̂ it obviously holds that

∀θ ∈ Θ : Remp(θ̂) ≤ Remp(θ).

This does not imply that θ̂ is unique.

Which kind of numerical technique is reasonable for this problem
strongly depends on model and parameter structure (continuous
params? uni-modal Remp(θ)?). Here, we will only discuss very simple
scenarios.
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LOCAL MINIMA

If Remp is continuous in θ we can define a local minimum θ̂:

∃ϵ > 0 ∀θ with
∥∥∥θ̂ − θ

∥∥∥ < ϵ : Remp(θ̂) ≤ Remp(θ).

Clearly every global minimum is also a local minimum. Finding a local
minimum is easier than finding a global minimum.
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LOCAL MINIMA AND STATIONARY POINTS
If Remp is continuously differentiable in θ then a sufficient condition for a local
minimum is that θ̂ is stationary with 0 gradient, so no local improvement is possible:

∂

∂θ
Remp(θ̂) = 0

and the Hessian ∂2

∂θ2 Remp(θ̂) is positive definite. While the neg. gradient points into
the direction of fastest local decrease, the Hessian measures local curvature of Remp.
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LEAST SQUARES ESTIMATOR

Now, for given features X ∈ Rn×p and target y ∈ Rn, we want to find
the best linear model regarding the squared error loss, i.e.,

Remp(θ) = ∥Xθ − y∥2
2 =

n∑
i=1

(θ⊤x(i) − y (i))2 .

With the sufficient condition for continously differentiable functions it
can be shown that the least squares estimator

θ̂ = (X⊤X)−1X⊤y.

is a local minimum of Remp. If X is full-rank, Remp is strictly convex and
there is only one local minimum - which is also global.

Note: Often such analytical solutions in ML are not possible, and we
rather have to use iterative numerical optimization.
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GRADIENT DESCENT

The simple idea of GD is to iteratively go from the current candidate θ[t]

in the direction of the negative gradient, i.e., the direction of the
steepest descent, with learning rate α to the next θ[t+1]:

θ[t+1] = θ[t] − α
∂

∂θ
Remp(θ

[t]).
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θ[0]

We choose a random start θ[0] with risk
Remp(θ

[0]) = 76.25.

© Introduction to Machine Learning – 6 / 11



GRADIENT DESCENT - EXAMPLE
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−α ∂
∂θRemp(θ

[0])
Now we follow in the direction of the
negative gradient at θ[0].
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We arrive at θ[1] with risk
Remp(θ

[1]) ≈ 42.73.
We improved:
Remp(θ

[1]) < Remp(θ
[0]).
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GRADIENT DESCENT - EXAMPLE
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[1]) Again we follow in the direction of the
negative gradient, but now at θ[1].
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θ[2] Now θ[2] has risk Remp(θ
[2]) ≈ 25.08.
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GRADIENT DESCENT - EXAMPLE
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We iterate this until some form of con-
vergence or termination.
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θ̂
We arrive close to a stationary θ̂ which
is hopefully at least a local minimum.
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GRADIENT DESCENT - LEARNING RATE

The negative gradient is a direction that looks locally promising to reduce Remp.

Hence it weights components higher in which Remp decreases more.

However, the length of − ∂
∂θ

Remp measures only the local decrease rate, i.e.,
there are no guarantees that we will not go "too far".

We use a learning rate α to scale the step length in each iteration. Too much can
lead to overstepping and no converge, too low leads to slow convergence.

Usually, a simple constant rate or rate-decrease mechanisms to enforce local
convergence are used
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FURTHER TOPICS

GD is a so-called first-order method. Second-order methods use
the Hessian to refine the search direction for faster convergence.

There exist many improvements of GD, e.g., to smartly control the
learn rate, to escape saddle points, to mimic second order
behavior without computing the expensive Hessian.

If the gradient of GD is not derived from the empirical risk of the
whole data set, but instead from a randomly selected subset, we
call this stochastic gradient descent (SGD). For large-scale
problems this can lead to higher computational efficiency.
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