Introduction to Machine Learning # ML-Basics Learner #### Learning goals Understand that a supervised learner fits models automatically from training data • #### SUPERVISED LEARNING EXAMPLE Imagine we want to investigate how working conditions affect productivity of employees. - It is a **regression** task since the target *productivity* is continuous. - We collect data about worked minutes per week (productivity), how many people work in the same office as the employee in question, and the employee's salary. | | Features x | | Target y | | |-----------------------------|------------------------------------|-----------------------------|--|-----------| | | People in Office (Feature 1) x_1 | Salary
(Feature 2) x_2 | Worked Minutes Week
(Target Variable) | | | (| 4 | 4300€ 🗼 | 2220 | | | $n=3$ $\left\langle ight.$ | y 12 | 2700 € | 1800 | | | \downarrow | 5 | 3100 € | 1920 | * | | $x_1^{(2)}$ | p = | = 2 | $x_2^{(1)}$ | $y^{(3)}$ | ### **SUPERVISED LEARNING EXAMPLE /2** How could we construct a model from these data? We could investigate the data manually and come up with a simple, hand-crafted rule such as: - The baseline productivity of an employee with salary 3000 and 7 people in the office is 1850 minutes - A decrease of 1 person in the office increases productivity by 30 - An increase of the salary by 100 increases productivity by 10 - => Obviously, this is neither feasible nor leads to a good model ### **IDEA OF SUPERVISED LEARNING** **Goal:** Automatically identify the fundamental functional relation in the data that maps an object's features to the target. - **Supervised** learning means we make use of *labeled* data for which we observed the outcome. - We use the labeled data to learn a model f. - Ultimately, we use our model to compute predictions for new data whose target values are unknown. #### LEARNER DEFINITION - The algorithm for finding our *f* is called **learner**. It is also called **learning algorithm** or **inducer**. - We prescribe a certain hypothesis space, the learner is our means of picking the best element from that space for our data set. - Formally, it maps training data $\mathcal{D} \in \mathbb{D}$ (plus a vector of hyperparameter control settings $\lambda \in \Lambda$) to a model: Train Car | Train Set | | | | | | | | | | |--------------|-------|------|---------|-------|-------------|--|--|--|--| | | | y | x_1 | x_2 | | | | | | | | | 2200 | 4 | 4300 | | | | | | | | | 1800 | 12 | 2700 | | | | | | | | | 1920 | 15 | 3100 | | | | | | | | | | Learner | Pre | diction of | | | | | | New Features | | | | Targ | et Variable | | | | | | x_1 | x_2 | | | | \hat{y} | | | | | | | | | Model | | | | | | | | 5 | | | , | | 2200 | | | | | #### **LEARNER DEFINITION / 2** As pseudo-code template it would work like this: - ullet Learner has a defined model space of parametrized functions ${\cal H}.$ - ullet User passes data set $\mathcal{D}_{\text{train}}$ and control settings $oldsymbol{\lambda}$. - Learner sets parameters so that model matches data best. - ullet Optimal parameters $\hat{ heta}$ or function $\hat{ heta}$ is returned for later usage.