
Introduction to Machine Learning

ML-Basics
Data
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Learning goals
Understand structure of tabular data
in ML

Understand difference between target
and features

Understand difference between
labeled and unlabeled data

Know concept of data-generating
process



IRIS DATA SET

Introduced by the statistician Ronald Fisher and one of the most
frequently used toy examples.

Classify iris subspecies based on flower measurements.

150 iris flowers: 50 versicolor, 50 virginica, 50 setosa.

Sepal length / width and petal length / width in [cm].

Source: https://rpubs.com/vidhividhi/irisdataeda

Word of warning: "iris" is a small, clean, low-dimensional data set,
which is very easy to classify; this is not necessarily true in the wild.
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DATA IN SUPERVISED LEARNING

The data we deal with in supervised learning usually consists of
observations on different aspects of objects:

Target: the output variable / goal of prediction
Features: measurable properties that provide a concise
description of the object

We assume some kind of relationship between the features and
the target, in a sense that the value of the target variable can be
explained by a combination of the features.
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ATTRIBUTE TYPES

Both features and target variables may be of different data types

Numerical variables can have values in R
Integer variables can have values in Z
Categorical variables can have values in {C1, ...,Cg}
Binary variables can have values in {0, 1}

For the target variable, this results in different tasks of supervised
learning: regression and classification.

Most learning algorithms can only deal with numerical features,
although there are some exceptions (e.g., decision trees can use
integers and categoricals without problems). For other feature
types, we usually have to pick or create an appropriate encoding,
i.e., cast them to numerical values.

If not stated otherwise, we assume numerical features.
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ENCODING FOR CATEGORICAL FEATURES

We expand the representation of a feature x with k mutually exclusive
categories from a scalar to a length-k̃ vector with at most one element
being 1, and 0 otherwise: o(x) = [I(x = j)]j=1,2,...,k̃ ∈ {0, 1}k̃ .

Each entry of o(x) is treated as a separate feature.

Two popular ways to do this are
One-hot encoding: k̃ = k dummies, so exactly one element is 1 (“hot”).
E.g., x ∈ {a, b, c} 7→ o(x) = (xa, xb, xc), with xa = xb = 0, xc = 1 and
o(x) = (0, 0, 1) for x = c.
Dummy encoding: k̃ = k − 1 dummies, so at most one element is 1,
cutting the redundancy of one-hot encoding (necessary for learners that
require non-singular input matrices, such as in linear regression).
E.g., x ∈ {a, b, c} 7→ o(x) = (xa, xb) for reference category c, with
xa = xb = 0 and o(x) = (0, 0) for x = c.

For features with a natural order in their categories we resort to
encodings that reflect this ordinality, e.g., a sequence of integer values.
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OBSERVATION LABELS

We call the entries of the target column labels.

We distinguish two basic forms our data may come in:

For labeled data we have already observed the target
For unlabeled data the target labels are unknown
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NOTATION FOR DATA

In formal notation, the data sets we are given are of the following form:

D =
((

x(1), y (1)
)
, . . . ,

(
x(n), y (n)

))
∈ (X × Y)n.

We call

X the input space with p = dim(X ) (for now: X ⊂ Rp),

Y the output / target space,

the tuple
(
x(i), y (i)

)
∈ X × Y the i-th observation,

xj =
(

x(1)
j , . . . , x(n)

j

)⊤
the j-th feature vector.

We denote

(X × Y)n, i.e., the set of all data sets of size n, as Dn,⋃
n∈N(X × Y)n, i.e., the set of all finite data sets, as D.

So we have observed n objects, described by p features.
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DATA-GENERATING PROCESS

We assume the observed data D to be generated by a process
that can be characterized by some probability distribution

Pxy ,

defined on X × Y .

We denote the random variables following this distribution by
lowercase x and y .

It is important to understand that the true distribution is essentially
unknown to us. In a certain sense, learning (part of) its structure
is what ML is all about.
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DATA-GENERATING PROCESS / 2

We assume data to be drawn i.i.d. from the joint probability density
function (pdf) / probability mass function (pmf) p(x, y).

i.i.d. stands for independent and identically distributed.
This means: We assume that all samples are drawn from the
same distribution and are mutually independent – the i-th
realization does not depend on the other n − 1 ones.
This is a strong yet crucial assumption that is precondition to
most theory in (basic) ML.
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DATA-GENERATING PROCESS / 3

Remarks:

With a slight abuse of notation we write random variables, e.g., x
and y , in lowercase, as normal variables or function arguments.
The context will make clear what is meant.

Often, distributions are characterized by a parameter vector
θ ∈ Θ. We then write p(x, y | θ).
This lecture mostly takes a frequentist perspective. Distribution
parameters θ appear behind the | for improved legibility, not to
imply that we condition on them in a probabilistic Bayesian sense.
So, strictly speaking, p(x|θ) should usually be understood to mean
pθ(x) or p(x,θ) or p(x;θ). On the other hand, this notation makes
it very easy to switch to a Bayesian view.
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