
Introduction to Machine Learning

k -Nearest Neighbors

Learning goals
Understand the basic idea of k -NN
for regression and classification

Understand that k -NN is a
non-parametric, local model

Know different distance measures for
different scales of feature variables



K -NEAREST-NEIGHBORS

k -NN can be used for regression and classification.

Generates "similar" predictions for x to its k closest neighbors.

"Closeness" requires a distance or similarity measure.
The subset of Dtrain that is at least as close to x as its k -th closest
neighbor x(k) in Dtrain is called the k -neighborhood Nk(x) of x:

Nk(x) = {x(i) ∈ Dtrain | d(x(i), x) ≤ d(x(k), x)}
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DISTANCE MEASURES

Popular for numerical features: Minkowski distances of the form

∥x − x̃∥q =

(
p∑

j=1
|xj − x̃j |q

) 1
q

for x, x̃ ∈ X with p numeric features

Especially, Manhattan (q = 1) and Euclidean (q = 2) distance

dManhattan (x, x̃) = ∥x − x̃∥1

=
p∑

j=1
|xj − x̃j |

dEuclidean (x, x̃) = ∥x − x̃∥2

=

√
p∑

j=1
(xj − x̃j)2
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PREDICTION - REGRESSION
Compute for each point the average output y of the k -nearest neighbours in Nk(x):

f̂ (x) =
1
k

∑
i:x(i)∈Nk (x)

y (i) or f̂ (x) =
1∑

i:x(i)∈Nk (x)
w (i)

∑
i:x(i)∈Nk (x)

w (i)y (i)

with neighbors weighted based on their distance to x: w (i) = 1
d(x(i),x)
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PREDICTION - CLASSIFICATION
For classification in g groups, a majority vote is used:

ĥ(x) = argmax
ℓ∈{1,...,g}

∑
i:x(i)∈Nk (x)

I(y (i) = ℓ)

And posterior probabilities can be estimated with:

π̂ℓ(x) =
1
k

∑
i:x(i)∈Nk (x)

I(y (i) = ℓ)
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SL SW Species dist
52 6.4 3.2 versicolor 0.200
59 6.6 2.9 versicolor 0.224
75 6.4 2.9 versicolor 0.100
76 6.6 3.0 versicolor 0.200
98 6.2 2.9 versicolor 0.224
104 6.3 2.9 virginica 0.141
105 6.5 3.0 virginica 0.100
111 6.5 3.2 virginica 0.224
116 6.4 3.2 virginica 0.200
117 6.5 3.0 virginica 0.100
138 6.4 3.1 virginica 0.100
148 6.5 3.0 virginica 0.100

Example with subset of iris data (k = 3)

π̂setosa(xnew) =
0
3 = 0%, π̂versicolor (xnew) =

1
3 = 33%, π̂virginica(xnew) =

2
3 = 67%,

ĥ(xnew) = virginica
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K -NN: FROM SMALL TO LARGE K
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Complex, local model vs smoother, more global model
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K -NN SUMMARY

k -NN is a lazy classifier, it has no real training step, it simply stores
the complete data - which are needed during prediction.

Hence, its parameters are the training data, there is no real
compression of information.

As the number of parameters grows with the number of training
points, we call k -NN a non-parametric model

k -NN is not based on any distributional or functional assumption,
and can, in theory, model data situations of arbitrary complexity.

The smaller k , the less stable, less smooth and more “wiggly” the
decision boundary becomes.

Accuracy of k -NN can be severely degraded by the presence of
noisy or irrelevant features, or when the feature scales are not
consistent with their importance.
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STANDARDIZATION AND WEIGHTS

Standardization: Features in k-NN are usually standardized or
normalized. If two features have values on a very different range,
most distances would place a higher importance on the one with a
larger range, leading to an imbalanced influence of that feature.

Importance: Sometimes one feature has a higher importance
(maybe we know this via domain knowledge). It can now manually
be upweighted to reflect this.

dweighted
Euclidean (x, x̃) =

√√√√ p∑
j=1

wj(xj − x̃j)2

If these weights would have to be learned in a data-driven manner,
we could only do this by hyperparameter tuning in k-NN. This is
inconvenient, and Gaussian processes handle this much better.
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GOWER DISTANCE

A weighted mean of univ. distances in the j-th feature.

It can handle categoricals, missings, and different ranges.

dgower (x, x̃) =

p∑
j=1

δxj ,x̃j · dgower (xj , x̃j)

p∑
j=1

δxj ,x̃j

.

δxj ,x̃j is 0 or 1. It’s 0 if j-th feature is missing in at least one
observation, or when the feature is asymmetric binary (where “1”
is more important than “0”) and both values are zero. Otherwise 1.

dgower (xj , x̃j): For nominals it’s 0 if both values are equal and 1
otherwise. For integers and reals, it’s the absolute difference,
divided by range.
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GOWER DISTANCE / 2

Example of Gower distance with data on sex and income:

index sex salary
1 m 2340
2 w 2100
3 NA 2680

dgower (x, x̃) =

p∑
j=1

δxj ,x̃j
·dgower (xj ,x̃j)

p∑
j=1

δxj ,x̃j

dgower (x(1), x(2)) =
1·1+1· |2340−2100|

|2680−2100|
1+1 =

1+ 240
580

2 = 1+0.414
2 = 0.707

dgower (x(1), x(3)) =
0·1+1· |2340−2680|

|2680−2100|
0+1 =

0+ 340
580

1 = 0+0.586
1 = 0.586

dgower (x(2), x(3)) =
0·1+1· |2100−2680|

|2680−2100|
0+1 =

0+ 580
580

1 = 0+1.000
1 = 1
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