Introduction to Machine Learning

k-Nearest Neighbors

. " e ' Learning goals

N zZ. .4 @ Understand the basic idea of k-NN
' P for regression and classification

@ Understand that k-NN is a
non-parametric, local model

@ Know different distance measures for
different scales of feature variables
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K-NEAREST-NEIGHBORS

@ k-NN can be used for regression and classification.
@ Generates "similar" predictions for x to its k closest neighbors.

@ "Closeness" requires a distance or similarity measure.
@ The subset of Dy.in that is at least as close to x as its k-th closest
neighbor x(*) in Dyin is called the k-neighborhood Nk (x) of x:

Nie(x) = {x € Dygain | d(x”,%) < d(x®, x)}
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DISTANCE MEASURES

@ Popular for numerical features: Minkowski distances of the form
1

P a
Ix —X||qg = (Z |x; — )”(/-]q> for x, X € X with p numeric features
j=1

@ Especially, Manhattan (g = 1) and Euclidean (q = 2) distance
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PREDICTION - REGRESSION

Compute for each point the average output y of the k-nearest neighbours in Ni(x): O O x

f(x) = Z y? or f(x) =

7( w® y(f)
/x(/)eNk( ) ZIX(’)ENk(x)

! m(fg;k(x) X @

with neighbors weighted based on their distance to x: wh) = 1

h - . d(x® x) x x
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PREDICTION - CLASSIFICATION

For classification in g groups, a majority vote is used:

h(x) = arg max 1" =0
ee{1,...,g} ix() € Ny (x)

And posterior probabilities can be estimated with:

B = 3 1600

irx() € N (x)

32 i SL SW Species dist

Species 52 6.4 3.2 versicolor 0.200

[@ versicolor 59 6.6 2.9 versicolor 0.224

virginica 75 6.4 2.9 versicolor 0.100

=31 76 6.6 3.0 versicolor 0.200

3 98 6.2 2.9 versicolor 0.224

3_ 104 6.3 2.9 virginica 0.141

g 105 6.5 3.0 virginica 0.100

38 3.0 Xnew [ ] 111 6.5 3.2 virginica 0.224

116 6.4 3.2 virginica 0.200

117 6.5 3.0 virginica 0.100

138 6.4 3.1 virginica 0.100

29 @ [ ] [ ] 148 65 3.0 Virginica 0.100
6.2 63 6.4 65 66

Sepal.Length

Example with subset of iris data (k = 3)

= 1§ = 33%, 7A"'virginica(xn«:-}w) = % = 67%7

7’i'setasa(xnew) - g -

h(Xnew) = virginica

0%, R versicolor (Xnew )
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K-NN: FROM SMALL TO LARGE K
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Complex, local model vs smoother, more global model
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K-NN SUMMARY

@ k-NN is a lazy classifier, it has no real training step, it simply stores
the complete data - which are needed during prediction.

@ Hence, its parameters are the training data, there is no real
compression of information.

@ As the number of parameters grows with the number of training
points, we call k-NN a non-parametric model

@ k-NN is not based on any distributional or functional assumption,
and can, in theory, model data situations of arbitrary complexity.

@ The smaller k, the less stable, less smooth and more “wiggly” the
decision boundary becomes.

@ Accuracy of k-NN can be severely degraded by the presence of
noisy or irrelevant features, or when the feature scales are not
consistent with their importance.
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STANDARDIZATION AND WEIGHTS

@ Standardization: Features in k-NN are usually standardized or
normalized. If two features have values on a very different range,
most distances would place a higher importance on the one with a
larger range, leading to an imbalanced influence of that feature.

@ Importance: Sometimes one feature has a higher importance

(maybe we know this via domain knowledge). It can now manually
be upweighted to reflect this.

P
ighted 1, < -
O atean (6 X) = | > wi(x; — %)?
j=1
@ If these weights would have to be learned in a data-driven manner,
we could only do this by hyperparameter tuning in k-NN. This is
inconvenient, and Gaussian processes handle this much better.
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GOWER DISTANCE

@ A weighted mean of univ. distances in the j-th feature.
@ It can handle categoricals, missings, and different ranges.

p
> Ox.% - dgower (X}, Xj)
- =1
dgower(X, X) = ! 2

> 5)(/’)"9-
j=1

° (5)(1.7;(/. is 0 or 1. It's 0 if j-th feature is missing in at least one
observation, or when the feature is asymmetric binary (where “1”
is more important than “0”) and both values are zero. Otherwise 1.

@ dgower(Xj, X;): For nominals it's 0 if both values are equal and 1
otherwise. For integers and reals, it’s the absolute difference,
divided by range.
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GOWER DISTANCE /2

Example of Gower distance with data on sex and income:

index | sex | salary
P
1 m 2340 2} 5X/-,;/-~dgower(Xj,)q)
- =
2 w 2100 dgower(x’x) =
3 NA 2680 '215%;]
=
|2340—2100| 240
1141, 2021000 240
dgoner (X1, x(B) = ——FE0L — g — 1044 — 0,707
|2340—2680|
0-141. 122002689 ) | 340
dgower (x(1), x(?)) = —— 20020 _ T _ 040586 _ 0,586
. _|2100—2680| 580
d, (x(2) x(3)) _ O famo—zioo] _ O+35 _ 0+1.000 _ 1
'gower s = 01 = 3 = 5 —
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