Introduction to Machine Learning

Random Forest
In a Nutshell
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Learning goals

@ Understand basic concept of random
forest

@ Know basic aggregation rules

@ Understand concept of feature
importance
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LEARNING AND PREDICTION WITH RF

@ Stabilizes tree learner by bagging (bootstrap aggregation)
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@ Randomizes tree learner and combines models into one meta model

@ Can be adapted to learning task, i.e., classification or regression
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LEARNING AND PREDICTION WITH RF

Input: Unlabeled data
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AGGREGATION RULES FOR DIFFERENT TASKS

Classification Task - Majority Vote
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Regression Task - Averaging
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PERFORMANCE OF RF

@ In general: Increasing the ensemble size stabilizes the predictions

o For regression tasks the stabilization is often not sufficient. X
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PERFORMANCE OF RF

@ RF performs well for classification tasks:

o Two different trees —Quite different decision regions
o Two different RFs — Similar decision regions

Tree 1 Tree 2
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PERFORMANCE OF RF

@ Trees should be decorrelated, i.e., make mistakes in different directions

@ Avoid correlation by
@ Bootstrap sampling
o Randomized splits. In each node of each tree, consider different
features for splitting:
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FEATURE IMPORTANCE

Several options, e.g., measure contribution of feature to model:
@ Measure based on improvement in splitting criterion

@ E.g. Feature importance of 'Health’, search all nodes with 'Health’ as
splitting variable:
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FEATURE IMPORTANCE

@ Measure based on OOB Loss
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FEATURE IMPORTANCE

Compute OOB Loss for O O x
.-- each Observation
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