
Introduction to Machine Learning

Random Forest
Basics

Learning goals
Know how random forests are defined
by extending the idea of bagging

Understand general idea to
decorrelate trees

Understand effects of
hyperparameters

RFs and overfitting



MOTIVATION

CARTs offer several appealing features:

Interpretability: Easy to understand and explain

Invariance to rank-preserving transformations:
E.g., unaffected by scaling or shifting of features

Versatility: Work on categorical and numerical data

Robustness to missing values: Can work with missings

Despite these benefits, CARTs are not without drawbacks:

Hastie, Tibshirani, and Friedman 2009

"Trees have one aspect that prevents them from being the
ideal tool for predictive learning, namely inaccuracy."
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http://www-stat.stanford.edu/~tibs/ElemStatLearn/


RANDOM FORESTS Breiman 2001

RFs use bagging with CARTs as BLs

Random feature sampling decorrelates the base learners

Fully expanded trees further increase variability of trees

© Introduction to Machine Learning – 2 / 11

http://dx.doi.org/10.1023/A%3A1010933404324


INTUITION BEHIND DECORRELATION

Since bootstrap samples are similar, models b̂[m] are correlated,
affecting the variance of an ensemble f̂
We would like variance to go down linearly with ensemble size, but
because of correlation we cannot really expect that
Assuming Var(b̂[m]) = σ2, Corr(b̂[m], b̂[j]) = ρ, semi-formal
analysis, without proper analysis of prediction error:
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Ensemble variance is “convex-combo of linear-reduction and
no-reduction, controlled by ρ”
Maybe we can decorrelate trees, to reduce ensemble variance?
And get less prediction error?
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RANDOM FEATURE SAMPLING

RFs decorrelate trees with a simple randomization:

For each node of tree, randomly draw mtry ≤ p features
(mtry = name in some implementations)

Only consider these features for finding the best split

Careful: Our previous analysis was simplified! The more we
decorrelate by this, the more random the trees become!
This also has negative effects!
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EFFECT OF FEATURE SAMPLING

Optimal mtry typically larger for regression than for classification

Good defaults exist, but still most relevant tuning param

Rule of thumb:

Classification: mtry = ⌊√p⌋
Regression: mtry = ⌊p/3⌋
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TREE SIZE

In addition to mtry, RFs have two other important HPs:

Min. nr. of obs. in each decision tree node
Default (ranger): min.node.size = 5 Breiman 2001

Depth of each tree
Default (ranger): maxDepth = ∞
There are more alternative HPs to control depth of tree:
minimal risk reduction, size of terminal nodes, etc.

RF usually use fully expanded trees, without aggressive early stopping
or pruning, to further increase variability of each tree. Louppe 2015

© Introduction to Machine Learning – 6 / 11

http://dx.doi.org/10.1023/A%3A1010933404324
https://arxiv.org/abs/1407.7502


ENSEMBLE SIZE

RFs usually better if ensemble is large Breiman 2001

But: Increases computational costs, and diminishing returns

100 or 500 is a sensible default

Can also inspect the OOB error (see later)
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http://dx.doi.org/10.1023/A%3A1010933404324


EFFECT OF ENSEMBLE SIZE
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EFFECT OF ENSEMBLE SIZE
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EFFECT OF ENSEMBLE SIZE
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CAN RF OVERFIT? Probst and Boulesteix 2018

Just like any other learner, RFs can overfit!

However, RFs generally less prone to overfitting than individual CARTs.

Overly complex trees can still lead to overfitting!
If most trees capture noise, so does the RF.

But randomization and averaging helps.

Since each tree is trained individually and without knowledge of previously
trained trees, increasing ntrees generally reduces variance without
increasing the chance of overfitting!
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http://jmlr.org/papers/v18/17-269.html


RF IN PRACTICE
Benchmarking bagged ensembles with 100 BLs each on spam versus RF
(ntrees = 100, mtry =

√
p, minnode = 1), we see how well RF performs!

⇒ RFs combine the benefits of random feature selection and fully expanded trees.
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DISCUSSION

Advantages:

Most advantages of trees also apply to RF: not much
preprocessing required, missing value handling, etc.

Easy to parallelize

Often work well (enough)

Works well on high-dimensional data

Works well on data with irrelevant “noise” variables

Disadvantages:

Same extrapolation problem as for trees

Harder to interpret than trees
(but many extra tools are nowadays available for interpreting RFs)

Implementation can be memory-hungry

Prediction can be computationally demanding for large ensembles
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