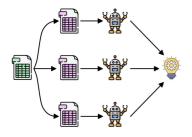
Introduction to Machine Learning

Random Forest Bagging Ensembles

× 0 0 × × ×

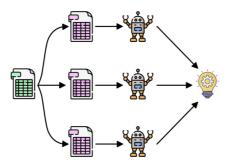


Learning goals

- Understand idea of bagging
- Be able to explain the connection between bagging and bootstrap
- Understand why bagging improves predictive performance

BAGGING

- Bagging is short for Bootstrap Aggregation
- **Ensemble method**, combines models into large "meta-model"; ensembles usually better than single **base learner**
- Homogeneous ensembles always use same BL class (e.g. CART), heterogeneous ensembles can use different classes
- Bagging is homogeneous

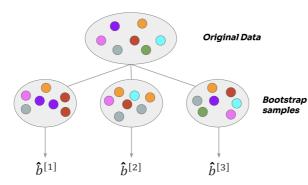


× 0 0 × 0 × ×

TRAINING BAGGED ENSEMBLES

Train BL on *M* **bootstrap** samples of training data \mathcal{D} :

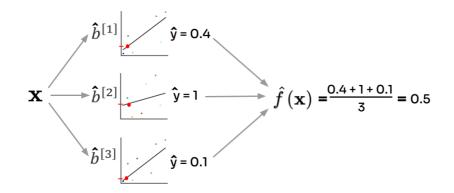
- Draw *n* observations from \mathcal{D} with replacement
- Fit BL on each bootstrapped data $\mathcal{D}^{[m]}$ to obtain $\hat{b}^{[m]}$



- Data sampled in one iter called "in-bag" (IB)
- Data not sampled called "out-of-bag" (OOB)

PREDICTING WITH A BAGGED ENSEMBLE

Average predictions of *M* fitted models for ensemble: (here: regression)



× 0 0 × × ×

BAGGING PSEUDO CODE

Bagging algorithm: Training

- 1: Input: Dataset D, type of BLs, number of bootstraps M
- 2: for $m = 1 \rightarrow M$ do
- 3: Draw a bootstrap sample $\mathcal{D}^{[m]}$ from \mathcal{D}
- 4: Train BL on $\mathcal{D}^{[m]}$ to obtain model $\hat{b}^{[m]}$

5: end for

Bagging algorithm: Prediction

- 1: Input: Obs. **x**, trained BLs $\hat{b}^{[m]}$ (as scores $\hat{f}^{[m]}$, hard labels $\hat{h}^{[m]}$ or probs $\hat{\pi}^{[m]}$)
- 2: Aggregate/Average predictions

$$\hat{f}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left(\hat{f}^{[m]}(\mathbf{x}) \right) \qquad (\text{regression / decision score, use } \hat{f}_{k} \text{ in multi-class})$$

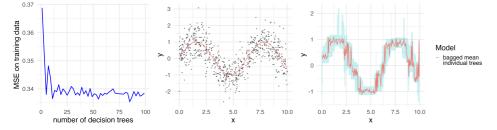
$$\hat{h}(\mathbf{x}) = \arg\max_{k \in \mathcal{Y}} \sum_{m=1}^{M} \mathbb{I} \left(\hat{h}^{[m]}(\mathbf{x}) = k \right) \qquad (\text{majority voting})$$

$$\hat{\pi}_{k}(\mathbf{x}) = \begin{cases} \frac{1}{M} \sum_{m=1}^{M} \hat{\pi}_{k}^{[m]}(\mathbf{x}) & (\text{probabilities through averaging}) \\ \frac{1}{M} \sum_{m=1}^{M} \mathbb{I} \left(\hat{h}^{[m]}(\mathbf{x}) = k \right) & (\text{probabilities through class frequencies}) \end{cases}$$

× × 0 × × ×

WHY/WHEN DOES BAGGING HELP?

- Bagging reduces the variability of predictions by averaging the outcomes from multiple BL models
- It is particularly effective when the errors of a BL are mainly due to (random) variability rather than systematic issues



• Increasing **nr. of BLs** improves performance, up to a point, optimal ensemble size depends on inducer and data distribution

MINI BENCHMARK

Bagged ensembles with 100 BLs each on spam: Bagging seems especially helpful for less stable learners like CART

