Introduction to Machine Learning

Random Forest
Bagging Ensembles

@ Understand idea of bagging
2 oy @ Be able to explain the connection
@ @_}@;_, "{2/" between bagging and bootstrap
@ Understand why bagging improves

) predictive performance
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BAGGING

@ Bagging is short for Bootstrap Aggregation

@ Ensemble method, combines models into large “meta-model”;
ensembles usually better than single base learner

@ Homogeneous ensembles always use same BL class (e.g. CART),
heterogeneous ensembles can use different classes

@ Bagging is homogeneous
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TRAINING BAGGED ENSEMBLES

Train BL on M bootstrap samples of training data D:
@ Draw n observations from D with replacement
@ Fit BL on each bootstrapped data D™ to obtain bl
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@ Data sampled in one iter called “in-bag” (IB)
@ Data not sampled called “out-of-bag” (OOB)
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PREDICTING WITH A BAGGED ENSEMBLE

Average predictions of M fitted models for ensemble:
(here: regression)
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1 f(x) =().4+‘1?’+ 0.1 =05
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BAGGING PSEUDO CODE

Bagging algorithm: Training

1: Input: Dataset D, type of BLs, number of bootstraps M
2: form=1— Mdo

3:  Draw a bootstrap sample DI from D

4:  Train BL on D™ to obtain model bl™

5: end for

Bagging algorithm: Prediction

1: Input: Obs. x, trained BLs bl (as scores 7™ hard labels Al™ or probs #1™)
2: Aggregate/Average predictions

M
. 1 . .
f(x) = Hml (x regression / decision score, use fx in multi-class
Ship () (reg 2 )
M
h(x) = arg max Z]I (f?[’"](x) = k) (majority voting)
key
M
LINGPIL babilities through i
Iy Zwk (x) (probabilities through averaging)
fix(x) = ] "
M Z]I (f)[”’](x) = k) (probabilities through class frequencies)
m=1
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WHY/WHEN DOES BAGGING HELP?

@ Bagging reduces the variability of predictions by averaging the
outcomes from multiple BL models

@ ltis particularly effective when the errors of a BL are mainly due to
(random) variability rather than systematic issues
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@ Increasing nr. of BLs improves performance, up to a point,
optimal ensemble size depends on inducer and data distribution
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MINI BENCHMARK

Bagged ensembles with 100 BLs each on spam: O O X
Bagging seems especially helpful for less stable learners like CART
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