Introduction to Machine Learning

Evaluation Test Error

Learning goals

- Understand the definition of test error
- Understand that test error is more reliable than train error
- Bias-Variance analysis of holdout splitting

TEST ERROR AND HOLD-OUT SPLITTING

• Simulate prediction on unseen data, to avoid optimistic bias:

$$
\rho(\textbf{y}_{\text{test}},\bm{F}_{\text{test}}) \text{ where } \bm{F}_{\text{test}} = \begin{bmatrix} \hat{\textbf{f}}_{\mathcal{D}_{\text{train}}}(\textbf{x}_{\text{test}}^{(1)}) \\ \dots \\ \hat{\textbf{f}}_{\mathcal{D}_{\text{train}}}(\textbf{x}_{\text{test}}^{(m)}) \end{bmatrix}
$$

● Partition data, e.g., 2/3 for train and 1/3 for test.

A.k.a. holdout splitting.

X

 \times \times

EXAMPLE: POLYNOMIAL REGRESSION

Previous example:

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

$$
f(\mathbf{x} \mid \boldsymbol{\theta}) = \theta_0 + \theta_1 \mathbf{x} + \cdots + \theta_d \mathbf{x}^d = \sum_{j=0}^d \theta_j \mathbf{x}^j.
$$

EXAMPLE: POLYNOMIAL REGRESSION / 2

Now with fresh test data: degree $1.00 -$ 1 3 0.75α > 0.50 Train set Ω Test set $0.25 0.00 \overline{}$. True function 0.00 0.25 0.50 0.75 1.00 x

- \bullet $d = 1$: MSE = 0.038: clearly underfitting
- \bullet $d = 3$: MSE = 0.002: pretty OK
- \bullet $d = 9$: MSE = 0.046: clearly overfitting

While train error monotonically decreases in *d*, test error shows that high-d polynomials overfit.

TEST ERROR

Let's plot train and test MSE for all *d*:

 \times \times

degree of polynomial

Increasing model complexity tends to cause

- a decrease in training error, and
- a U-shape in test error

(first underfit, then overfit, sweet-spot in the middle).

- Boston Housing data
- Polynomial regression (without interactions)

The training error...

decreases with smaller training set size as it becomes easier for the model to learn all observed patterns perfectly.

X $\times\overline{\times}$

The training error...

decreases with increasing model complexity as the model gets better at learning more complex structures.

X $\times\overline{\times}$

The test error...

will typically decrease with larger training set size as the model generalizes better with more data to learn from.

The test error...

will have higher variance with smaller test set size.

The test error...

will have higher variance with increasing model complexity.

BIAS AND VARIANCE

- Test error is a good estimator of GE, given a) we have enough data b) test data is representative i.i.d.
- Estimates for smaller test sets can fluctuate considerably this is why we use resampling in such situations. Repeated $\frac{2}{3}$ / $\frac{1}{3}$ $\frac{1}{3}$ holdout splits: iris ($n = 150$) and sonar ($n = 208$).

BIAS-VARIANCE OF HOLD-OUT – EXPERIMENT

Hold-out sampling produces a trade-off between **bias** and **variance** that is controlled by split ratio.

- Smaller training set \rightarrow poor fit, pessimistic bias in GE.
- \bullet Smaller test set \rightarrow high variance.

Experiment:

- \bullet spirals data ($sd = 0.1$), with CART tree.
- Goal: estimate real performance of a model with $|\mathcal{D}_{train}| = 500$.
- **•** Split rates *s* ∈ {0.05, 0.10, ..., 0.95} with $|\mathcal{D}_{\text{train}}| = s \cdot 500$.
- \bullet Estimate error on $\mathcal{D}_{\text{test}}$ with $|\mathcal{D}_{\text{test}}| = (1 s) \cdot 500$.
- 50 repeats for each split rate.
- Get "true" performance by often sampling 500 points, fit learner, then eval on 10⁵ fresh points.

XX

BIAS-VARIANCE OF HOLD-OUT – EXPERIMENT / 2

- Clear pessimistic bias for small training sets we learn a much worse model than with 500 observations.
- But increase in variance when test sets become smaller.

BIAS-VARIANCE OF HOLD-OUT – EXPERIMENT / 3

- Let's now plot the MSE of the holdout estimator.
- NB: Not MSE of model, but squared difference between estimated holdout values and true performance (horiz. line in prev. plot).
- Best estimator is ca. train set ratio of 2/3.
- NB: This is a single experiment and not a scientific study, but this rule-of-thumb has also been validated in larger studies.

 \sim \times