Introduction to Machine Learning

Evaluation ROC Basics

0	0	X
X	J	0
	X	X

		True Class y		
		+	-	
Pred.	+	TP	FP	$PPV = \frac{TP}{TP+FP}$
ŷ	-	FN	TN	$NPV = \frac{TN}{FN+TN}$
		$TPR = \frac{TP}{TP+FN}$	$TNR = \frac{TN}{FP+TN}$	Accuracy = TP+TN TOTAL

Learning goals

- Understand why accuracy is not an optimal performance measure for imbalanced labels
- Understand the different measures computable from a confusion matrix
- Be aware that each of these measures has a variety of names

CLASS IMBALANCE

- Assume a binary classifier diagnoses a serious medical condition.
- Label distribution is often **imbalanced**, i.e, not many people have the disease.
- Evaluating on mce is often inappropriate for scenarios with imbalanced labels:
 - Assume that only 0.5% have the disease.
 - Always predicting "no disease" has an mce of 0.5 %, corresponding to very high accuracy.
 - $\bullet\,$ This sends all sick patients home $\rightarrow\,$ bad system
- This problem is known as the accuracy paradox.

× 0 0 × × ×

CLASS IMBALANCE / 2

Classifying all observations as "no disease" (green) yields top accuracy simply because the "disease" occurs so rarely \rightarrow accuracy paradox.

× × 0 × × ×

IMBALANCED COSTS

- Another point of view is **imbalanced costs**.
- In our example, classifying a sick patient as healthy should incur a much higher cost than classifying a healthy patient as sick.
- The costs depend a lot on what happens next: we can well assume that our system is some type of screening filter, and often the next step after labeling someone as sick might be a more invasive, expensive, but also more reliable test for the disease.
- Erroneously subjecting someone to this step is undesirable (psychological, economic, medical expense), but sending someone home to get worse or die seems much more so.
- Such situations not only arise under label imbalance, but also when costs differ (even though classes might be balanced).
- We could see this as imbalanced costs of misclassification, rather than imbalanced labels; both situations are tightly connected.

× < 0 × × ×

IMBALANCED COSTS / 2

Imbalanced costs: classifying incorrectly as "no disease" incurs very high cost.

- This important subfield of ML is called **cost-sensitive learning**, which we will not cover in this lecture unit.
- Unfortunately, users find it notoriously hard to come up with precise cost figures in imbalanced scenarios.
- Evaluating "from different perspectives", with multiple metrics, often helps to get a first impression of system quality.

× 0 0 × 0 × ×

ROC ANALYSIS

- **ROC analysis** is a subfield of ML which studies the evaluation of binary prediction systems.
- ROC stands for "receiver operating characteristics" and was initially developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefields – still has the funny name.

http://media.iwm.org.uk/iwm/mediaLib//39/media-39665/large.jpg

LABELS: ROC METRICS

From the confusion matrix (binary case), we can calculate "ROC" metrics.

		True Class y		
		+	_	
Pred.	+	TP	FP	$\rho_{\rm PPV} = \frac{{\rm TP}}{{\rm TP} + {\rm FP}}$
ŷ	_	FN	TN	$\rho_{\textit{NPV}} = \tfrac{\text{TN}}{\text{FN} + \text{TN}}$
		$\rho_{\rm TPR} = \frac{{\rm TP}}{{\rm TP} + {\rm FN}}$	$\rho_{\rm TNR} = \frac{\rm TN}{\rm FP+TN}$	$\rho_{\rm ACC} = \frac{{\rm TP} + {\rm TN}}{{\rm TOTAL}}$

× × 0 × × ×

- True positive rate ρ_{TPR} : how many of the true 1s did we predict as 1?
- True Negative rate ρ_{TNR} : how many of the true 0s did we predict as 0?
- Positive predictive value ρ_{PPV}: if we predict 1, how likely is it a true 1?
- Negative predictive value $\rho_{\textit{NPV}}$: if we predict 0, how likely is it a true 0?
- Accuracy ρ_{ACC} : how many instances did we predict correctly?

LABELS: ROC METRICS

Example:

			Act	val Class y	
			Positive	Negative	
	ŷ Pred	Positive	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10%
Freu.	, i cu.	Negative	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
			True Positive Rate = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	True Negative Rate = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

× × 0 × × ×

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

MORE METRICS AND ALTERNATIVE TERMINOLOGY

Unfortunately, for many concepts in ROC, 2-3 different terms exist.

Clickable version/picture source,

Interactive diagram

XX

LABELS: F1 MEASURE

- It is difficult to achieve high **positive predictive value** and high **true positive rate** simultaneously.
- A classifier predicting more positive will be more sensitive (higher ρ_{TPR}), but it will also tend to give more *false* positives (lower ρ_{TNR}, lower ρ_{PPV}).
- A classifier that predicts more negatives will be more precise (higher ρ_{PPV}), but it will also produce more *false* negatives (lower ρ_{TPR}).
- The F_1 score balances two conflicting goals:
 - Maximizing positive predictive value
 - 2 Maximizing true positive rate
- ρ_{F_1} is the harmonic mean of ρ_{PPV} and ρ_{TPR} :

$$\rho_{F_1} = \mathbf{2} \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\rho_{PPV} + \rho_{TPR}}$$

Note that this measure still does not account for the number of true negatives.

LABELS: F1 MEASURE / 2

 F_1 score for different combinations of ρ_{PPV} & ρ_{TPR} .

 \rightarrow Tends more towards the lower of the two combined values.

× × ×

- A model with $\rho_{TPR} = 0$ (no positive instance predicted as positive) or $\rho_{PPV} = 0$ (no true positives among the predicted) has $\rho_{F_1} = 0$.
- Always predicting "negative": $\rho_{F_1} = 0$.
- Always predicting "positive":

 $\rho_{F_1} = 2 \cdot \rho_{PPV} / (\rho_{PPV} + 1) = 2 \cdot n_+ / (n_+ + n),$

which will be small when the size of the positive class n_+ is small.

WHICH METRIC TO USE?

- As we have seen, there is a plethora of methods.
 - \rightarrow This leaves practitioners with the question of which to use.
- Consider a small benchmark study.
 - We let *k*-NN, logistic regression, a classification tree, and a random forest compete on classifying the credit risk data.
 - The data consist of 1000 observations of borrowers' financial situation and their creditworthiness (good/bad) as target.
 - Predicted probabilities are thresholded at 0.5 for the positive class.
 - Depending on the metric we use, learners are ranked differently according to performance (value of respective performance measure in parentheses):

TPR	2 (0.8777)	3 (0.8647)	1 (0.9257)	4 (0.8357)
TNR		2 (0.4797)		1 (0.4911)
PPV.		1 (0.7947)		2 (0.7925)
Ë F1-		2 (0.8279)	1 (0.8488)	
AUC			1 (0.7902)	
ACC		2 (0.7490)	1 (0.7700)	
k–NN logistic regression random forest learner				CART

× × ×

WHICH METRIC TO USE? / 2

- We need not expect overly large discrepancies in general, but neither will we always see an unambiguous picture.
- Different metrics emphasize different aspects of performance. \rightarrow The choice should be made in the domain context.
- For practitioners it is vital to understand what should be evaluated exactly, and which measure is appropriate.
 - Regarding credit risk, for instance, defaults are to be avoided, but not at all cost.
 - The bank must undertake a certain risk to remain profitable, so a more balanced measure such as the *F*₁ score might be in order.
 - On the other hand, a system detecting weapons at an airport should be able to achieve very high true positive rates, even if this comes at the expense of some false alarms.

× × ×