
Introduction to Machine Learning

Evaluation
Resampling 2

Learning goals
Understand why resampling is better
estimator than hold-out

In-depth bias-var analysis of
resampling estimator

Understand that CV does not
produce independent samples

Short guideline for practical use



BIAS-VARIANCE ANALYSIS FOR SUBSAMPLING
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Reconsider bias-var experiment for holdout (maybe re-read)

Split rates s ∈ {0.05, 0.1, ..., 0.95} with |Dtrain| = s · 500.

Holdout vs. subsampling with 50 iters

50 replications
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BIAS-VARIANCE ANALYSIS FOR SUBSAMPLING
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Both estimators are compared to "real" MCE (black line)

SS same pessimistic bias as holdout for given s, but much less var
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BIAS-VARIANCE ANALYSIS FOR SUBSAMPLING
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MSE of ĜE strictly better for SS

Smaller var of SS enables to use larger s for optimal choice

The optimal split rate now is a higher s ≈ 0.8.

Beyond s = 0.8: MSE goes up because var doesn’t go down as
much as we want due to increasing overlap in trainsets (see later)
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DEDICATED TESTSET SCENARIO - ANALYSIS

Goal: estimate GE
(

f̂
)
= E

[
L
(

y , f̂ (x)
)]

via

ĜE
(

f̂
)
=

1
m

∑
(x,y)∈Dtest

L
(

y , f̂ (x)
)

Here, only (x, y) are random, they are m i.i.d. fresh test samples
This is: average over i.i.d L(y , f̂ (x)), so directly know E and var.

And can use CLT to approx distrib of ĜE
(

f̂
)

with Gaussian.

E[ĜE
(

f̂
)
] = E[L

(
y , f̂ (x)

)
] = GE

(
f̂
)

V[ĜE
(

f̂
)
] = 1

mV[L
(

y , f̂ (x)
)
]

So ĜE
(

f̂
)

is unbiased estimator of GE
(

f̂
)

, var decreases
linearly in testset size, have an approx of full distrib (can do NHST,
CIs, etc.)
NB: Gaussian may work less well for e.g. 0-1 loss, with E close to
0, can use binomial or other special approaches for other losses
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PESSIMISTIC BIAS IN RESAMPLING

Estim GE(I, n) (surrogate for GE
(

f̂
)

when f̂ is fit on full D, with

|D| = n) via resampling based estim ĜE(I, ntrain)

ĜE(I,J , ρ,λ) = agr
(
ρ
(

yJtest,1 ,F Jtest,1,I(Dtrain,1,λ)

)
,

...

ρ
(

yJtest,B ,F Jtest,B,I(Dtrain,B,λ)

))
,

Let’s assume agr is avg and ρ is loss-based, so ρL

The ρ are simple holdout estims. So:

E[ĜE(I,J , ρ,λ)] ≈ E[ρ
(

yJtest ,F Jtest,I(Dtrain,λ)

)
]

NB1: In above, as always for GE(I), both Dtrain and Dtest (and so x ∈ Dtest) are
random vars, and we take E over them

NB2: Need ≈ as maybe not all train/test sets in resampling of exactly same size
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PESSIMISTIC BIAS IN RESAMPLING / 2

E[ĜE(I,J , ρ,λ)] ≈ E[ρ
(

yJtest ,F Jtest,I(Dtrain,λ)

)
] =

E

 1
m

∑
(x,y)∈Dtest

L(y , I(Dtrain)(x))

 = GE(I, ntrain)

⇒
So when we use ĜE(I,J , ρ,λ) to to estimate GE(I, n), our
expected value is nearly correct, it’s GE(I, ntrain)

But fitting I on less data (ntrain vs full n) usually results in model
with worse perf, hence estimator is pessimistically biased

Bias the stronger, the smaller our training splits in resampling.
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DON’T DO THIS AT HOME

NO INDEPENDENCE OF CV RESULTS

Similar analysis as before holds for CV

Might be tempted to report distribution or SD of individual CV split
perf values, e.g. to test if perf of 2 learners is significantly different

But k CV splits are not independent

A t-test on the difference of the
mean GE estimators yields a
highly significant p-value of
≈ 7.9 · 10−5 on the 95% level.

LDA vs SVM on spam classification problem, performance
estimation via 20-CV w.r.t. MCE.
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NO INDEPENDENCE OF CV RESULTS

V[ĜE] of CV is a difficult combination of
average variance as we estim on finite trainsets
covar from test errors, as models result from overlapping trainsets

covar due to the dependence of trainsets and test obs appear in trainsets

Naively using the empirical var of k individual ĜEs (as on slide
before) yields biased estimator of V[ĜE]. Usually this
underestimates the true var!

Worse: there is no unbiased estimator of V[ĜE] [Bengio, 2004]

Take into account when comparing learners by NHST

Somewhat difficult topic, we leave it with the warning here
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SHORT GUIDELINE

Fast 
LOO-CV?

Large 
sample?

Low model 
complexity?

LOO-CV

Subsampling

k-fold CV

(small k)

632+ Bootstrap

Subsampling

k-fold CV

yes

yes

yes

no

no

no

5-CV or 10-CV have become standard.

Do not use hold-out, CV with few folds, or
SS with small split rate for small n. Can bias
estim and have large var.

For small n, e.g. n < 200, use LOO or,
probably better, repeated CV.

For some models, fast tricks for LOO exist

With n = 100.000, can have "hidden"
small-sample size, e.g. one class very small

SS usually better than bootstrapping.
Repeated obs can cause problems in
training, especially in nested setups where
the “training” set is split up again.
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