## Introduction to Machine Learning

# Evaluation Resampling 1





#### Learning goals

- Understand how resampling techniques extend the idea of simple train-test splits
- Understand the ideas of cross-validation, bootstrap and subsampling

#### RESAMPLING

- Goal: estimate  $GE(\mathcal{I}, \lambda, n, \rho_L) = \mathbb{E}[L(y, \mathcal{I}(\mathcal{D}_{train}, \lambda)(\mathbf{x}))].$
- Holdout: Small trainset = high pessimistic bias; small testset = high var.
- Resampling: Repeatedly split in train and test, then average results.
- Allows to have large trainsets large (low pessimistic bias) since we use  $\operatorname{GE}(\mathcal{I}, \lambda, n_{\operatorname{train}}, \rho)$  as a proxy for  $\operatorname{GE}(\mathcal{I}, \lambda, n, \rho)$ )
- And reduce var from small testsets via averaging over repetitions.



× 0 0 × 0 × ×

#### **RESAMPLING STRATEGIES**

- Represent train and test sets by index vectors:: *J*<sub>train</sub> ∈ {1,..., *n*}<sup>*n*<sub>train</sub></sub> and *J*<sub>test</sub> ∈ {1,..., *n*}<sup>*n*<sub>test</sub>

  </sup></sup>
- Resampling strategy = collection of splits:

$$\mathcal{J} = ((J_{\text{train},1}, J_{\text{test},1}), \dots, (J_{\text{train},B}, J_{\text{test},B})).$$

• Resampling estimator:

$$\begin{split} \widehat{\operatorname{GE}}(\mathcal{I}, \mathcal{J}, \rho, \boldsymbol{\lambda}) &= \operatorname{agr}\Big(\rho\Big(\mathbf{y}_{J_{\text{test},1}}, \mathbf{F}_{J_{\text{test},1}, \mathcal{I}(\mathcal{D}_{\text{train},1}, \boldsymbol{\lambda})}\Big), \\ &\vdots \\ &\rho\Big(\mathbf{y}_{J_{\text{test}, \mathcal{B}}}, \mathbf{F}_{J_{\text{test}, \mathcal{B}}, \mathcal{I}(\mathcal{D}_{\text{train}, \mathcal{B}}, \boldsymbol{\lambda})}\Big)\Big), \end{split}$$

• Aggregation  $\operatorname{agr}$  is typically "mean" and  $n_{\operatorname{train}} \approx n_{\operatorname{train},1} \approx \cdots \approx n_{\operatorname{train},B}$ .



### **CROSS-VALIDATION**

- Split the data into k roughly equally-sized partitions.
- Each part is test set once, join k 1 parts for training.
- Obtain *k* test errors and average.
- Fraction (k 1)/k is used for training, so 90% for 10CV
- Each observation is tested exactly once.

× 0 0 × 0 × ×

#### Example: 3-fold CV



### **CROSS-VALIDATION - STRATIFICATION**

- Used when target classes are very imbalanced
- Then small classes can randomly get very small in samples
- Preserve distrib of target (or any feature) in each fold
- For classes: simply CV-split the class data, then join

#### Example: stratified 3-fold cross-validation



### **CROSS-VALIDATION**

- 5 or 10 folds are common.
- k = n is known as "leave-one-out" CV (LOO-CV)
- $\bullet$  Bias of  $\widehat{\operatorname{GE}}$  : The more folds, the smaller. LOO nearly unbiased.
- LOO has high var, better many folds for small data but not LOO
- Repeated CV (avg over high-fold CVs) good for for small data.

| 0 | 0 | X |
|---|---|---|
| × | J | 0 |
|   | X | X |

#### SUBSAMPLING

- Repeated hold-out with averaging, a.k.a. Monte Carlo CV.
- Typical choices for splitting:  $\frac{4}{5}$  or  $\frac{9}{10}$  for training.





- Smaller subsampling rate = larger pessimistic bias
- More reps = smaller var

### BOOTSTRAP

- Draw *B* trainsets of size *n* with replacement from orig  $\mathcal{D}$
- Testsets = Out-Of-Bag points:  $\mathcal{D}_{\text{test}}^b = \mathcal{D} \setminus \mathcal{D}_{\text{train}}^b$





- Similar analysis as for subsampling
- Trainsets contain about 2/3 unique points:

$$1 - \mathbb{P}((\mathbf{x}, y) \notin \mathcal{D}_{\text{train}}) = 1 - (1 - \frac{1}{n})^n \stackrel{n \to \infty}{\longrightarrow} 1 - \frac{1}{e} \approx 63.2\%$$

- Replicated train points can lead to problems and artifacts
- Extensions B632 and B632+ also use trainerr for better estimate when data very small

#### LEAVE-ONE-OBJECT-OUT

- Used when we have multiple obs from same objects, e.g., persons or hospitals or base images
- Data not i.i.d. any more
- Data from same object should either be in train or testset
- Otherwise we likely bias  $\widehat{\rm GE}$
- CV on objects, or leave-one-object-out



× 0 0 × × ×