Introduction to Machine Learning

Evaluation Precision-Recall Curves

Learning goals

- Understand PR curves
- Same as PPV-TPR curve
- Compare to standard TPR-FPR ROC curve

PRECISION-RECALL CURVES

- Slightly changed ROC plot
- Simply plot precision and recall, instead of TPR-FPR
- Precision = $\rho_{PPV} = \frac{TP}{TP+FP}$, recall = $\rho_{TPR} = \frac{TP}{TP+FN}$
- Might call them TPR-PPV curve
- NB: Both metrics don't depend on TNs

(b) Comparison in PR space

Davis and Goadrich (2006): The Relationship Between Precision-Recall and ROC Curves (URL).

PRECISION-RECALL CURVES

- Might be better for highly imbal data $(n_- \gg n_+)$ than TPR-FPR
- Figure (a): ROC; both learners seem to perform well
- Figure (b): PR; visible room for improvement (top-right=best)
- PR reveals better that algo 2 has advantage over 1

(a) Comparison in ROC space

(b) Comparison in PR space

Davis and Goadrich (2006): The Relationship Between Precision-Recall and ROC Curves ($\underline{\text{URL}}$).

IMBALANCED DATA

ullet Assume imbalanced classes with $n_-\gg n_+$

 If neg class large, typically less interested in high TNR = low FPR, but more in PPV

• Large (abs) change in FP yields small change in FPR

PPV likely more informative

FP=10:

	True +1	True -1
Pred. Pos	100	10
Pred. Neg	10	9990
Total	110	10000

<u>FP=100</u>:

	True +1	True -1
Pred. +1	100	100
Pred1	10	9900
Total	110	10000

TPR = 10/11 TPR = 10/11 FPR = 0.001 FPV = 10/11 PPV = 1/2

RHS: Given test says +1, it's now a coin flip that this is correct.

IMBALANCED DATA / 2

- Top row: Imbal classes with $\pi = 0.003$
- Bottom: balanced with $\pi = 0.5$
- ROC curves (LHS) are similar
- PR curve (RHS) changes strongly from imbal to bal classes

Wissam Siblini et. al. (2004): Master your Metrics with Calibration (URL).

False positive rate

CONCLUSIONS

- Curve fully dominates in ROC space iff dominates in PR-space
- In imbalanced situations rather use PR than standard TPR-FPR
- If comparing few models on a single task, probably plot both.
 Then observe and think.
- For tuning: can also use PR-AUC (or partial versions)

(a) Comparison in ROC space (b) Comparison in PR space
Davis and Goadrich (2006): The Relationship Between Precision-Recall and ROC Curves (URL).

