Introduction to Machine Learning

Evaluation
Precision-Recall Curves

Learning goals
@ Understand PR curves
@ Same as PPV-TPR curve

@ Compare to standard TPR-FPR ROC
curve
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PRECISION-RECALL CURVES

Slightly changed ROC plot
Simply plot precision and recall, instead of TPR-FPR

Precision = pppy = 75t ps, recall = prea = iy
Might call them TPR-PPV curve

NB:

Both metrics don’t depend on TNs
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Davis and Goadrich (2006): The Relationship Between Precision-Recall and ROC Curves (URL).
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https://www.biostat.wisc.edu/~page/rocpr.pdf

PRECISION-RECALL CURVES

@ Might be better for highly imbal data (n— > ny) than TPR-FPR
@ Figure (a): ROC; both learners seem to perform well

@ Figure (b): PR; visible room for improvement (top-right=best)

@ PR reveals better that algo 2 has advantage over 1
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IMBALANCED DATA

@ Assume imbalanced classes with n_ > n
@ If neg class large, typically less interested in high TNR = low FPR,

but more in PPV

@ Large (abs) change in FP yields small change in FPR

@ PPV likely more informative

FP=10:

True +1

True -1

Pred. Pos

100

Pred. Neg

10

9990

Total

110

10000

TPR = 10/11
FPR = 0.001
PPV = 10/11

FP=100:

True +1

True -1

Pred. +1

100

100

Pred. -1

10

9900

Total

110

10000

TPR = 10/11

FPR = 0.01

PPV = 1

/2

RHS: Given test says +1, it's now a coin flip that this is correct.
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IMBALANCED DATA /2

@ Top row: Imbal classes with m = 0.003

@ Bottom: balanced with m = 0.5

@ ROC curves (LHS) are similar

@ PR curve (RHS) changes strongly from imbal to bal classes

7 = 0.003
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m=0.5
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Wissam Siblini et. al. (2004): Master your Metrics with Calibration (URL).
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https://arxiv.org/pdf/1909.02827.pdf

CONCLUSIONS

@ Curve fully dominates in ROC space iff dominates in PR-space
@ Inimbalanced situations rather use PR than standard TPR-FPR

@ If comparing few models on a single task, probably plot both.
Then observe and think.

@ For tuning: can also use PR-AUC (or partial versions)
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