
Introduction to Machine Learning
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ESTIMATING THE GENERALIZATION ERROR

For a fixed model, we are interested in the Generalization Error
(GE): GE

(
f̂ , L

)
:= E

[
L
(

y , f̂ (x)
)
)
]
, i.e. the expected error the

model makes for data (x, y) ∼ Pxy .

We need an estimator for the GE with m test observations:

ĜE(̂f , L) :=
1
m

∑
(x,y)

[
L
(

y , f̂ (x)
)]

However, if (x, y) ∈ Dtrain, ĜE(̂f , L) will be biased via overfitting
the training data.

Thus, we estimate the GE using unseen data (x, y) ∈ Dtest:

ĜE(̂f , L) :=
1
m

∑
(x,y)∈Dtest

[
L
(

y , f̂ (x)
)]
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ESTIMATING THE GENERALIZATION ERROR / 2

Usually, we have no access to new unseen data.

Thus, we divide our data set manually into Dtrain and Dtest.

This process is depicted below.
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METRICS

But what is L
(

y , f̂ (x)
)

?

L
(

y , f̂ (x)
)

will always indicate how good the target matches our
prediction. While we can always use the (inner) loss function that we
trained the model on as outer loss, this may not always be ideal:

Explicit values of loss functions may not have a meaningful
interpretation beyond ordinality.

The loss function may not be applicable to all models that we are
interested in comparing (model agnosticism), e.g. when
comparing generative and discriminative approaches.

Thus, there also exist evaluation metrics that are not based on inner
losses. Yet, they can (still) be faced with these problems:

They might be not useful (for a specific use case, e.g. when we
have imbalanced data).

They might be improper, i.e. they might draw false conclusions.
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DEEP DIVE: PROPERNESS

A scoring rule S is proper relative to F if (where a low value of the
scoring rule is better):

S(Q,Q) ≤ S(F ,Q)∀F ,Q ∈ F

with F being a convex class of probability measures.

This means that a scoring rule should be optimal for the actual
data target distribution, i.e. we are rewarded for properly modeling
the target.
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METRICS FOR CLASSIFICATION

Commonly used evaluation metrics include:

Accuracy:
ρACC = 1

m

∑m
i=1[y

(i) = ŷ (i)] ∈ [0, 1].

Misclassification error (MCE):
ρMCE = 1

m

∑m
i=1[y

(i) ̸= ŷ (i)] ∈ [0, 1].

Brier Score:
ρBS = 1

m

∑m
i=1

(
π̂(i) − y (i)

)2

Log-loss:
ρLL = 1

m

∑m
i=1

(
−y (i) log

(
π̂(i)

)
−
(
1 − y (i)

)
log

(
1 − π̂(i)

))
.

The probabalistic metrics, Brier Score and Log-Loss penalize false
confidence, i.e. predicting the wrong label with high probability, heavily.
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METRICS FOR CLASSIFICATION / 2

For hard-label classification, the confusion matrix is a useful
representation:

True Class y
+ −

Pred. + True Positive
(TP)

False Positive
(FP)

ŷ − False Negative
(FN)

True Negative
(TN)

From this matrix a variety of evaluation metrics, including precision and
recall, can be computed.

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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RECEIVER OPERATING CHARACTERISTICS

Receiver operating characteristics (ROC) performs evaluation for
binary classifiers beyond single metrics.
We can assess classifiers by their TPR (y-axis) and FPR (x-axis).
We aim to identify good classifiers who (weakly) dominate others.
For example, the "Best" classifier in the image strictly dominates
"Pos-25%" and "Pos-75%" and weakly dominates the others.
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METRICS FOR REGRESSION

Commonly used evaluation metrics include:

Sum of Squared Errors (SSE): ρSSE(y,F ) =
m∑

i=1
(y (i) − ŷ (i))2

Mean Squared Error (MSE): ρMSE(y,F ) = 1
m

m∑
i=1

SSE

Root Mean Squared Error (RMSE): ρRMSE(y,F ) =
√

MSE

R-Squared: ρR2(y,F ) = 1 −

m∑
i=1

(y(i)−ŷ(i))2

m∑
i=1

(y(i)−ȳ)2

Mean Absolute Error (MAE):

ρMAE(y,F ) = 1
m

m∑
i=1

|y (i) − ŷ (i)| ∈ [0;∞)
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ESTIMATING THE GENERALIZATION ERROR
(BETTER)

While

ĜE(̂f , L) :=
1
m

∑
(x,y)∈Dtest

[
L
(

y , f̂ (x)
)]

will be unbiased, with a small m it will suffer from high variance. We
have two options to decrease the variance:

Increase m.

Compute ĜE(̂f , L) for multiple test sets and aggregate them.

With a finite amount of data, increasing m would mean to decrease the
size of the training data. Thus, we focus on using multiple (B) test sets:

J = ((Jtrain,1, Jtest,1), . . . , (Jtrain,B, Jtest,B)) .

where we compute ĜE(̂f , L) for each set and aggregate the estimates.
These B sets are generated through resampling.

© Introduction to Machine Learning – 9 / 10



RESAMPLING

There exist a few well established resampling strategies:
(Repeated) Hold-out / Subsampling
Cross validation
Bootstrap

All methods aim to generate J by splitting the full data set (repeatedly)
into a train and test set. The model is trained on the respective train set
and evaluated on the test set.
Example: 3-fold cross validation

In order to robustify performance estimates we can repeat these
resamplings, e.g. we could perform 10 times 8 fold cross validation.
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