Introduction to Machine Learning

Evaluation Measures for Regression

Learning goals

- Know the definitions of mean squared error (MSE) and mean absolute error (MAE)
- \bullet Understand the connections of MSF and MAE to L2 and L1 loss
- Know the definition of Spearman's ρ ۰
- Know the definitions of *R* ² and \bullet generalized *R* 2

MEAN SQUARED ERROR (MSE)

$$
\rho_{MSE}(\mathbf{y}, \mathbf{F}) = \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2 \in [0; \infty) \qquad \rightarrow \text{L2 loss}.
$$

 6.65 1.15

0 2 4 x

Outliers with large prediction error heavily influence the MSE, as they enter quadratically.

Similar measures:

• Sum of squared errors:
$$
\rho_{SSE}(\mathbf{y}, \mathbf{F}) = \sum_{i=1}^{m} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^2
$$

1 $2 3 \geq 4$ 5- 6 7

.

• Root MSE (orig. scale):
$$
\rho_{RMSE}(\mathbf{y}, \mathbf{F}) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}
$$

Х \times \times

6.65

 -4 -2 0 2 4
Residuals = y − y 4

 $0 -$ 5 10 L(^ y, y)

 $15 -$

1.15

MEAN ABSOLUTE ERROR

$$
\rho_{\text{MAE}}(\mathbf{y}, \mathbf{F}) = \frac{1}{m} \sum_{i=1}^{m} |y^{(i)} - \hat{y}^{(i)}| \in [0; \infty) \qquad \rightarrow \text{L1 loss}.
$$

More robust, less influenced by large residuals, more intuitive than MSE.

Similar measures:

 \bullet Median absolute error (for even more robustness)

MEAN ABSOLUTE PERCENTAGE ERROR

$$
\rho_{\text{MAPE}}(\mathbf{y}, \mathbf{F}) = \frac{1}{m} \sum_{i=1}^{m} \left| \frac{y^{(i)} - \hat{y}^{(i)}}{y^{(i)}} \right| \in [0; \infty)
$$

X \times \times

Similar measures:

- Mean Absolute Scaled Error (MASE)
- Symmetric Mean Absolute Percentage Error (sMAPE)

$$
\rho_{R^2}(\mathbf{y}, \mathbf{F}) = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}{\sum_{i=1}^{m} (y^{(i)} - \bar{y})^2} = 1 - \frac{SSE_{LinMod}}{SSE_{Intercept}}.
$$

 $\overline{\mathbf{X}}$

- Well-known classical measure for LMs on train data.
- "Fraction of variance explained" by the model.
- How much SSE of constant baseline is reduced when we use more complex model?
- $\rho_{R^2} = 1$: all residuals are 0, we predict perfectly,
- $\rho_{R^2} = 0.9$: LM reduces SSE by factor of 10. $\rho_{B2} = 0$: we predict as badly as the constant model.
- Is \in [0, 1] on train data; as LM is always better than intercept.

R ² **VS MSE**

- Better *R* ² does not necessarily imply better fit.
- \bullet Data: $y = 1.1x + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.15)$.
- Fit half (black) and full data (black and red) with LM.

- Fit does not improve, but *R* ² goes up.
- But: Invariant w.r.t. to linear scaling of *y*, MSE is not.

XX

GENERALIZED *R* ² **FOR ML**

1 − *LossComplexModel LossSimplerModel* .

- E.g., model vs constant, LM vs non-linear model, tree vs forest, model with fewer features vs model with more, ...
- We could use arbitrary measures.
- **.** In ML we would rather evaluate on test set.
- Can then become negative, e.g., for SSE and constant baseline, if our model fairs worse on the test set than a simple constant.

SPEARMAN'S ρ

Can be used if we care about the relative ranks of predictions:

$$
\rho_{\text{Spearman}}(\bm{y}, \bm{F}) = \frac{\text{Cov}(\text{rg}(\bm{y}), \text{rg}(\hat{\bm{y}}))}{\sqrt{\text{Var}(\text{rg}(\bm{y}))} \cdot \sqrt{\text{Var}(\text{rg}(\hat{\bm{y}}))}} \in [-1, 1],
$$

- Very robust against outliers
- A value of 1 or -1 means that \hat{y} and y have a perfect monotonic relationship.
- **■** Invariant under monotone transformations of \hat{y}

 \times \times