Introduction to Machine Learning

CART
Growing a Tree

Learning goals

== e @ Understand how a tree is grown by
B an exhaustive search
G £ @ Know where and how the split point is
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TREE GROWING

@ We start with an empty tree, a root node that contains all the data.
Trees are then grown by recursively applying greedy optimization
to each node .

@ Greedy means we do an exhaustive search: Ideally, all possible
splits of AV on all possible points ¢ for all features x; are compared
in terms of their empirical risk R(N, , t).

@ The training data is then distributed to child nodes according to the
optimal split and the procedure is repeated in the child nodes.
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TREE GROWING

@ Start with a root node of all data.

© Search for feature and split point that minimizes the empirical risk
in child nodes — makes label distribution more homogenous.
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TREE GROWING

© Proceed recursively for each child node: Select best split and
divide data from parent node into left and right child nodes.
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TREE GROWING

© Repeat until we reach a stop criterion, e.g., until each leaf cannot
be split further.
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SPLIT PLACEMENT
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Splits are usually placed at the mid-point of the observations they split:
the large margin to the next closest observations makes better
generalization on new, unseen data more likely.
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FINDING THE SPLIT

Assume we split the data so that the misclassification error (MCE) is
minimal through the spilitting.
First, we check a set of potential splits for Sepal.Width
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FINDING THE SPLIT

Then we check a set of potential splits for Sepal.Length
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FINDING THE SPLIT

@ We take the split with lowest MCE: Sepal.Length =5.5

@ In real life, we actually search over many more splitting points.
Common strategies involve: a) Searching over all possible split
points (exhaustive search), b) searching quantile-wise

@ MCE is rarely used, we will cover split criteria in detail later.
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