Introduction to Machine Learning

CART
Splitting Criteria for Regression
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SPLITTING CRITERIA
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How to find good splitting rules? — Empirical Risk Minimization
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OPTIMAL CONSTANTS IN LEAVES

Idea: A splitis good if each child’s point predictor reflects its data well.

For each child \V, predict with optimal constant, e.g., the mean

ov = 2. YiortheLploss ie, RIN) = 3 (y—on)?
(x.y)eN (xy)eN

Root node:
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OPTIMAL CONSTANTS IN LEAVES

Which of these two splits is better?
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RISK OF A SPLIT

I' I'
270 ® ) 21e @ Py
o “| ot . 4 o LA . 4
R ¥, T wh ko,
-1 ? . sh' -1 - ‘-:";
21 '.lr' = 21 'irf =
00 25 50 75 100 00 25 57(.) 75 100
R(N7) = 23.4, R(N2) = 72.4 R(N7) = 78.1, R(N2) = 46.1
The total risk is the sum of the individual losses:
23.4+72.4 =95.8 78.0 +46.1 = 124 1

Based on the SSE, we prefer the first split.
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SEARCHING THE BEST SPLIT

Let’s find the best split for this feature by tabulating results.
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SEARCHING THE BEST SPLIT

Let’s iterate — quantile-wise or over all points.
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We have reduced the problem to a simple loop.
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FORMALIZATION

@ N C D is the data contained in this node
@ Let ¢y be the predicted constant for
@ The risk R(N) for a node is:

RWN)= D Ly.ov)
(x,y)eN

@ The optimal constantis ¢y = argmin > L(y,c)
¢ (xy)eEN

@ We often know what that is from theoretical considerations — or we
can perform a simple univariate optimization
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FORMALIZATION /2

@ A split w.r.t. feature x; at split point ¢ divides a parent node A into
N ={(x,y) e N:xi<tland Np = {(x,y) e N : x; > t}.

@ To evaluate its quality, we compute the risk of our new, finer model

= > Lrewm)+ D Ly.ew)
(x,y)EN; (x,y)EN?

@ Finding the best way to split N into A7, N2 means solving

argmin R(N,j, t)
it
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FORMALIZATION /3

@ R(N,j,t) = R(N1) + R(N2), makes sense if R is a simple sum

@ If we use averages, we have to reweight the terms to obtain a
global average w.r.t. ' as the children have different sizes

Wﬂ |N2|

72-/\/’7.7
W10 =137 Wl

R(N) + 7 R(Ne)

@ We mention this for clarity, as quite a few texts contain only the
(more complicated) weighted formula without clear explanation
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