Introduction to Machine Learning

CART
Splitting Criteria for Classification

Learning goals

@ Understand how to define split
criteria via ERM

@ Understand how to find splits in
regression with L, loss
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OPTIMAL CONSTANT MODELS

As losses in classification, we typically use:

@ (Multi-class) Brier score L(y,w) = i (mk — ok(¥))?,
a.k.a. Lo loss on probabilities .

@ (Multi-class) Log loss L (y,7) = — Zg: ok(y) log(mk),
as in logistic regression .

Optimal constant predictions (in a node) for both losses are simply the
proportions of the contained classes:
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FINDING THE BEST SPLIT

Let's compute the Brier score for all splits, with optimal constant
probability vectors in both children x O
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FINDING THE BEST SPLIT

Let's compute the Brier score for all splits, with optimal constant
probability vectors in both children x O
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FINDING THE BEST SPLIT

The optimal split point typically creates greatest imbalance or purity of

label distribution x O

0.75 : - .
oo .
35+
. -
s
4 et 4]
P
0.25 254 ala .
1
- [ i
ad
0.00 — 204 4
@R e e

Proportion
°
@
g
©
5

Sepal.Width

5 3 7 8
Sepal.Length

Introduction to Machine Learning — 2/4



RISK MINIMIZATION VS. IMPURITY

@ Split crits are sometimes defined in terms of impurity reduction
instead of ERM, where a measure of “impurity” is defined per node

@ For regression trees, “impurity” is simply defined as variance of y,
which is quite obviously L, loss

@ Brier score is equivalent to Gini impurity

zg: # (1- #9)

k=1

@ Log loss is equivalent to entropy

)Iog7r
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@ Trees can be understood completely through the lens of ERM, so
this new terminology is unnecessary and perhaps confusing
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SPLITTING WITH MISCLASSIFICATION LOSS

@ Often, we want to minimize the MCE in classification

@ Zero-One-Loss is not differentiable, but that is a non-issue in the
tree-optimization based on loops

@ Brier score and Log loss more sensitive to changes in the node
probs, often produce purer nodes, and are still preferred

Split 1: Split 2:
class0 class 1 class0 class 1
N 300 100 N 400 200
N> 100 300 N> 0 200

@ Both splits are equivalent in MCE

@ But: Split 2 results in purer nodes, both Brier score (Gini) and Log
loss (Entropy) prefer 2nd split
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