Algorithms and Data Structures

Matrix Approximation Non-Negative Matrix Factorization & Recommender Systems Application

× × ×

Learning goals

- Non-negative matrix factorization
- Recommender systems application

NON-NEGATIVE MATRIX FACTORIZATION

This leads to a constrained optimization problem

$$\begin{split} \min_{\substack{\mathbf{W} \in \mathbb{R}^{m \times k}, \mathbf{H} \in \mathbb{R}^{k \times n} \\ \text{with}} & \|\mathbf{X} - \mathbf{W}\mathbf{H}\|^2, \end{split}$$

The following problems must be addressed

- NMF is NP-hard
- INMF is ill-posed
- Choice of rank k

NON-NEGATIVE MATRIX FACTORIZATION / 2

• NMF is NP-hard

The problem is only convex in either **W** or **H**, but not in both simultaneously. Probably there is no efficient, exact solution for NMF. There are efficient heuristics such as **multiplicative update rules**, but convergence to a global optimum cannot be guaranteed.

Algorithm Multiplicative Update Rules

1: Initialize $\mathbf{W}, \mathbf{H} \ge \mathbf{0}$

2: repeat

3:
$$h_{ij} \leftarrow h_{ij} \frac{(\mathbf{W}^{\mathsf{t}} \mathbf{X})_{ij}}{(\mathbf{W}^{\mathsf{T}} \mathbf{W} \mathbf{H})_{ij}}$$

4: $w_{ij} \leftarrow w_{ij} \frac{(\mathbf{X} \mathbf{H}^{\mathsf{T}})_{ij}}{(\mathbf{W} \mathbf{H} \mathbf{H}^{\mathsf{T}})_{ij}}$

5: until Stop criterion fulfilled

 $\times \times$

NON-NEGATIVE MATRIX FACTORIZATION / 3

INMF is ill-posed

The problem can usually not be solved uniquely.

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0.5 \\ 0 & 1 & 0 & 0.5 \\ 0 & 0 & 1 & 0.5 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

Different factorizations mean different interpretations. Therefore in practice a regularization term is often added to the target function.

× < 0 × × ×

NON-NEGATIVE MATRIX FACTORIZATION / 4

Choice of rank k

In contrast to singular value decomposition, it is much more difficult to determine the rank k in advance.

Possibilities:

- *k* is fixed in advance (based on prior knowledge / intuition) or results for different *k* are compared
- k is automatically estimated during NMF (not discussed here)

× × ×

Back to our previous example:

	Die Hard	Top Gun	Titanic	Notting Hill
User 1	5	NA	3	NA
User 2	5	4	3	3
User 3	2	NA	5	NA
User 4	5	5	3	1
User 5	1	2	5	5
User 6	1	2	4	5

× 0 0 × × ×

Non-negative matrix factorization offers an alternative to singular value decomposition. The advantage of a NMF solution is the increased interpretability of the matrices W and H.

- We replace missing values with the row mean value:
- Output: Choice of k:

We suspect that our movie database contains movies from two different categories and set k = 2.

Non-negative matrix factorization:

```
set.seed(1)
res = nmf(X, rank = 2)
W = res@fit@W
H = res@fit@H
```

× × ×

W				
##			Action	Romance
##	User	1	3.86	1.861
##	User	2	4.06	1.360
##	User	3	1.83	2.978
##	User	4	5.14	0.098
##	User	5	0.38	3.918
##	User	6	0.44	3.540

Η

##	Die Hard	Top Gun	Titanic	Notting Hill
## Action	1.08	0.91	0.46	0.22
## Romanc	e 0.14	0.46	1.15	1.32

The columns of the 6×2 matrix **W** could be interpreted as movie categories (here: "Action" and "Romance"). The figure shows which users prefer which categories.

The entries of the 2 \times 4 matrix ${\bf H}$ describe which movies are to be assigned to which category.

• Calculate $\hat{\mathbf{X}} = \mathbf{W}\mathbf{H}$:

₩ **%*%** H

##			Die Hard	Top Gun	Titanic	Notting Hill
##	User	1	4.45	4.3	3.9	3.3
##	User	2	4.60	4.3	3.4	2.7
##	User	3	2.41	3.0	4.3	4.3
##	User	4	5.58	4.7	2.5	1.2
##	User	5	0.97	2.1	4.7	5.2
##	User	6	0.98	2.0	4.3	4.8

× 0 0 × × ×

Here we would also recommend "Top Gun" to user 1, an action movie. For user 3 we recommend "Notting Hill", because he tends to prefer romantic movies.

MORE MATERIAL ON RECOMMENDER SYSTEMS

More on Recommender Systems:

- Matrix Factorization Techniques for Recommender Systems
- Recommender Systems Comparison (including implementation in R)
- Movielens Dataset