Algorithms and Data Structures

Matrix Approximation Recommender Systems Application using SVD

Learning goals

• Recommender systems application

Initial situation:

- *m* users (e.g. Netflix users)
- *n* items (e.g. Movies)
- **X** User-Item Matrix: *xij* rating of user *i* for item *j*

Example: Suppose there are 4 movies and 6 users in our database.

Of all available items only a few are evaluated by one user (e.g. Netflix, Amazon), thus the user-item matrix is **sparse** in many applications.

The target is to make a **prediction** for these missing values, which quantifies how high the interest of a user in the respective item is.

Then we recommend the items that users have not yet rated, but are likely to find interesting.

 \times \times

Basically one distinguishes between two approaches:

- **Collaborative Filtering**: Identify "similar" users based on their behavior and recommend items in which similar users are most interested (e.g. by using singular value decomposition).
- **Content-based**: Identify using a similarity measure "similar" items and recommend items that are similar to the items that the user has rated high in the past.

A collaborative filtering approach results from the singular value decomposition.

Procedure:

- **¹** Fill up the data matrix **X** by imputation, e.g.
	- By item average rating, i.e. the column mean value
	- By user average rating, i.e. the row mean value
	- By overall average rating
- **²** Choice of rank *k*: Calculate singular values and select *k* so that $\sigma_k \gg \sigma_{k+1}$. Larger *k* yields a better approximation, smaller *k* a less complex model.
- **³** Calculate singular value decomposition of rank *k* and from it the matrices **W** and **H**.
- **⁴** Calculate **WH** and recommend to each user the movies with the best estimated rating from the ones he has not seen yet

Back to the example:

X

¹ We replace missing values with the mean value of each row:

 $X = ifelse(is.na(X), rowMeans(X, na.rm = TRUE), unlist(X))$

² Choice of *k*:

```
svd(X)$d
## [1] 17.24 6.13 2.14 0.39
```

```
We choose k = 2.
```
³ Calculate the matrices **W** and **H** using a singular value decomposition:

```
res = svd(X, nu = 2, nv = 2)Uk = res$u
Vk = \text{res}v
Sigma = diag(res$d[1:2])W = Uk %*% sqrt(Sigmak)
H = sqrt(Sigma) %*% t(Vk)
```
X \times \times

4 Calculate the prediction $\hat{\mathbf{X}} = \mathbf{W}\mathbf{H}$

 $Xhat = W$ $X*$ % H

Table: User Ratings for Movies

Since user 1 is similar to user 2 and user 4 due to their past ratings, we would recommend "Top Gun". However, for user 3 we would recommend "Notting Hill", since this user is more similar to user 5 and user 6 and they rated the movie particularly well.

Disadvantages of solution by singular value decomposition:

Often the resulting matrices **W** and **H** are not really interpretable because they contain negative values.

If the values are naturally non-negative, such as

- **•** Pixel intensities
- Counts
- User scores / ratings
- ...

one often wants to find a non-negative matrix factorization to increase interpretability, i.e. $\textbf{W} \geq 0$ and $\textbf{H} \geq 0$ ^(*).

 $(*)$ > is to be understood component-wise

 \times \times