
Algorithms and Data Structures

Matrix Approximation
Recommender Systems Application using
SVD

Learning goals
Recommender systems application

APPLICATION: RECOMMENDER SYSTEMS (1)

Initial situation:

m users (e.g. Netflix users)

n items (e.g. Movies)

X User-Item Matrix: xij rating of user i for item j

Example: Suppose there are 4 movies and 6 users in our database.

Die Hard Top Gun Titanic Notting Hill
User 1 5 NA 3 NA
User 2 5 4 3 3
User 3 2 NA 5 NA
User 4 5 5 3 1
User 5 1 2 5 5
User 6 1 2 4 5

© Algorithms and Data Structures – 1 / 9

APPLICATION: RECOMMENDER SYSTEMS (1) / 2

Of all available items only a few are evaluated by one user (e.g. Netflix,
Amazon), thus the user-item matrix is sparse in many applications.

The target is to make a prediction for these missing values, which
quantifies how high the interest of a user in the respective item is.

Then we recommend the items that users have not yet rated, but are
likely to find interesting.

© Algorithms and Data Structures – 2 / 9

APPLICATION: RECOMMENDER SYSTEMS (1) / 3

Basically one distinguishes between two approaches:

© Algorithms and Data Structures – 3 / 9

APPLICATION: RECOMMENDER SYSTEMS (1) / 4

Collaborative Filtering: Identify "similar" users based on their
behavior and recommend items in which similar users are most
interested (e.g. by using singular value decomposition).

Content-based: Identify - using a similarity measure - "similar"
items and recommend items that are similar to the items that the
user has rated high in the past.

© Algorithms and Data Structures – 4 / 9

APPLICATION: RECOMMENDER SYSTEMS (1) / 5

A collaborative filtering approach results from the singular value
decomposition.
Procedure:

1 Fill up the data matrix X by imputation, e.g.

By item average rating, i.e. the column mean value
By user average rating, i.e. the row mean value
By overall average rating

2 Choice of rank k : Calculate singular values and select k so that
σk ≫ σk+1. Larger k yields a better approximation, smaller k a
less complex model.

3 Calculate singular value decomposition of rank k and from it the
matrices W and H.

4 Calculate WH and recommend to each user the movies with the
best estimated rating from the ones he has not seen yet

© Algorithms and Data Structures – 5 / 9

APPLICATION: RECOMMENDER SYSTEMS (1) / 6

Back to the example:

X

Die Hard Top Gun Titanic Notting Hill

User 1 5 NA 3 NA

User 2 5 4 3 3

User 3 2 NA 5 NA

User 4 5 5 3 1

User 5 1 2 5 5

User 6 1 2 4 5

1 We replace missing values with the mean value of each row:

X = ifelse(is.na(X), rowMeans(X, na.rm = TRUE), unlist(X))

© Algorithms and Data Structures – 6 / 9

APPLICATION: RECOMMENDER SYSTEMS (1) / 7

2 Choice of k :

svd(X)$d

[1] 17.24 6.13 2.14 0.39

We choose k =2.
3 Calculate the matrices W and H using a singular value

decomposition:

res = svd(X, nu = 2, nv = 2)

Uk = res$u

Vk = res$v

Sigmak = diag(res$d[1:2])

W = Uk %*% sqrt(Sigmak)

H = sqrt(Sigmak) %*% t(Vk)

© Algorithms and Data Structures – 7 / 9

APPLICATION: RECOMMENDER SYSTEMS (1) / 8

4 Calculate the prediction X̂ = WH
Xhat = W %*% H

Die Hard Top Gun Titanic Notting Hill
User 1 4.82 3.69 2.37 3.41
User 2 5.03 3.96 2.91 3.07
User 3 2.24 2.70 3.64 5.44
User 4 5.34 4.37 3.65 3.96
User 5 2.87 2.90 3.85 4.52
User 6 1.09 1.85 4.05 5.00

Table: User Ratings for Movies

Since user 1 is similar to user 2 and user 4 due to their past
ratings, we would recommend "Top Gun". However, for user 3 we
would recommend "Notting Hill", since this user is more similar to
user 5 and user 6 and they rated the movie particularly well.

© Algorithms and Data Structures – 8 / 9

APPLICATION: RECOMMENDER SYSTEMS (1) / 9

Disadvantages of solution by singular value decomposition:

Often the resulting matrices W and H are not really interpretable
because they contain negative values.

If the values are naturally non-negative, such as

Pixel intensities

Counts

User scores / ratings

...

one often wants to find a non-negative matrix factorization to increase
interpretability, i.e. W ≥ 0 and H ≥ 0 (∗).

(∗) ≥ is to be understood component-wise

© Algorithms and Data Structures – 9 / 9

