Algorithms and Data Structures

Matrix Approximation
Singular Value Decomposition & Principal
Component Analysis

Learning goals

L i < @ Singular value decomposition

@ Principal component analysis
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REMINDER: SINGULAR VALUE DECOMPOSITION

For a matrix A € R™*" of rank r, there exists a decomposition
A=uxv'

with U € R™™ and V € R"*" are orthogonal matrices, and
3 € R™" is a diagonal matrix with non-negative diagonal entries
sorted in descending order, i.e. o1 > g2 > ...

Tr
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REMINDER: SINGULAR VALUE DECOMPOSITION
/2

Definition:
@ The diagonal elements of the matrix 3 are known as singular
values of the matrix A

@ The column vectors of U are called left singular vectors
@ The row vectors of V are called right singular vectors

A non-negative real number ¢ is a singular value if both left and right
singular vectors u and v exist, such that

Av = ou
Alu = ov
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REMINDER: SINGULAR VALUE DECOMPOSITION
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A truncated singular value decomposition of rank k < r is given by

Ui V)

where ¥, € R¥*k only contains the k largest singular values and Uy
and Vy the corresponding left/right singular vectors.
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REMINDER: SINGULAR VALUE DECOMPOSITION
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"Intuition™:

@ Each matrix defines a matrix transformation x — Ax. The singular
value decomposition splits this transformation into a rotation /
mirror (x — V 'x), a scaling (x — ¥x) and another rotation / mirror
(x — Ux).

@ In 2D, the singular values can be interpreted as the magnitude of
the semiaxis of the ellipse defined by A.

@ The columns of U form an orthonormal basis for the column space
of A, the columns of V span the row space of A.
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REMINDER: SINGULAR VALUE DECOMPOSITION

/5
Example:
1 1
Consider A = ( 3 %
2
The A matrix defines a linear transformation.
Unit circle (1): multiplication with A
2 2
1 14
>0 Lr > 04
1 1
2 2
2 1 0 1 2 2 1 0 7 2
X X
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REMINDER: SINGULAR VALUE DECOMPOSITION
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It can be decomposed using the singular value decomposition:

Unit circle (1): multiplication with V" (2): multiplication with = (3): multiplication with U
’ 24 2 2

Note: The red / blue vectors are the canonical unit vectors (1,0) " and (0,1) " and
their transformations after the respective matrix multiplications.
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EXCURSUS: PRINCIPAL COMPONENT ANALYSIS

Given: n data points with p features (*) each

Goal: Projection of the n data points into a k-dimensional space
(k < p) with as little information loss as possible

Idea:

@ Find a linear tranformation f : RP — R¥, which maps each
observation x € RP to a k-dimensional point z.

@ Lose as little information as possible through this dimensionality
reduction.

@ As little information as possible is lost if we can reconstruct the
point z as good as possible, i.e. we can use a linear function
h: R¥ — RP, such that x ~ h(z).

(*) We assume the data points are centered around 0.
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EXCURSUS: PRINCIPAL COMPONENT ANALYSIS

/2
-
@WTH reconstruct
_’—/ —\_\_‘—\_
R? R’

The linear transformations f, h are described by matrix multiplication:
f:x' »x'"F=1zandh:z' —z'H

Note: Here, we are writing x as a row vector X', to be in line with the matrix notation
in the following slides (the observations are the rows of the design matrix X).
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EXCURSUS: PRINCIPAL COMPONENT ANALYSIS
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Goal: Minimize the reconstruction error between data X € R™P and

the projected and reconstructed data XFH.

min |X — XFH|/%
FERPXK HERK*P

Defining XF =: W € R"*¥, we write this as
min || X — WH|}.
WeRM<K HERK*P

This is the problem of matrix approximation. One solution is

XF = W=UX,, H=V],

with Uy € R™K 3, € Rk Vv, € RP*X chosen as truncated singular
value decomposition of X.
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EXCURSUS: PRINCIPAL COMPONENT ANALYSIS
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H = V] € R¥*P s the reconstruction transformation matrix. The
projection matrix F = V € RP*X fulfills XF = UxXy:

XF = ka:uszvk:uz< I > :U<2k> = Uy,
opfk 0nfk
@ The rows of XF = U3, € R™* are the projected observations.

@ It can be shown (see next slide), that the rows of H = V|| € Rk*P
correspond to the k (pair-wise orthogonal) principal components.
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EXCURSUS: PRINCIPAL COMPONENT ANALYSIS
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A more common motivation of PCA is the following: Linearly transform
the data to a new coordinate system such that the greatest variance in
the (transformed) data is along the first PC, the second greatest
variance is along a second PC orthogonal to the first PC, etc.

@ In this formulation, it can be shown that the k first principal
components correspond to the k eigenvectors with the greatest
eigenvalues of the covariance matrix X ' X.

@ The eigenvalue decomposition X " X and the singular value
decomposition of X are related. Given the singular value

decomposition of X, we can derive the eingevalue decomposition
of XT X:

X'x = vuTuzv'T = vx2yT

with 32 := BT € RP*P having the squared singular values of X
on the diagonal.
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EXCURSUS: PRINCIPAL COMPONENT ANALYSIS
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@ The right singular vectors V of X are equivalent to the
eigenvectors of X ' X, and the singular values of X are equal to the
square-root of the eigenvalues of X " X. So we come up with the
same solution for both approaches.
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