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REMINDER: SINGULAR VALUE DECOMPOSITION

For a matrix A ∈ Rm×n of rank r , there exists a decomposition

A = UΣV⊤

with U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and
Σ ∈ Rm×n is a diagonal matrix with non-negative diagonal entries
sorted in descending order, i.e. σ1 ≥ σ2 ≥ ...

σ1

...
. . . · · · 0 · · ·

σr

...
...

...
· · · 0 · · · · · · 0 · · ·

...
...


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Definition:

The diagonal elements of the matrix Σ are known as singular
values of the matrix A

The column vectors of U are called left singular vectors

The row vectors of V are called right singular vectors

A non-negative real number σ is a singular value if both left and right
singular vectors u and v exist, such that

Av = σu

A⊤u = σv
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A truncated singular value decomposition of rank k ≤ r is given by

UkΣk V⊤
k

where Σk ∈ Rk×k only contains the k largest singular values and Uk

and Vk the corresponding left/right singular vectors.
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"Intuition":

Each matrix defines a matrix transformation x 7→ Ax. The singular
value decomposition splits this transformation into a rotation /
mirror (x 7→ V⊤x), a scaling (x 7→ Σx) and another rotation / mirror
(x 7→ Ux).

In 2D, the singular values can be interpreted as the magnitude of
the semiaxis of the ellipse defined by A.

The columns of U form an orthonormal basis for the column space
of A, the columns of V span the row space of A.
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Example:

Consider A =

(
1 1

2
−3

2 1

)
.

The A matrix defines a linear transformation.
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It can be decomposed using the singular value decomposition:

Note: The red / blue vectors are the canonical unit vectors (1, 0)⊤ and (0, 1)⊤ and

their transformations after the respective matrix multiplications.
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EXCURSUS: PRINCIPAL COMPONENT ANALYSIS

Given: n data points with p features (∗) each

Goal: Projection of the n data points into a k -dimensional space
(k < p) with as little information loss as possible

Idea:

Find a linear tranformation f : Rp → Rk , which maps each
observation x ∈ Rp to a k -dimensional point z .

Lose as little information as possible through this dimensionality
reduction.

As little information as possible is lost if we can reconstruct the
point z as good as possible, i.e. we can use a linear function
h : Rk → Rp, such that x ≈ h(z).

(∗) We assume the data points are centered around 0.
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The linear transformations f , h are described by matrix multiplication:
f : x⊤ 7→ x⊤F =: z and h : z⊤ 7→ z⊤H
Note: Here, we are writing x as a row vector x⊤, to be in line with the matrix notation

in the following slides (the observations are the rows of the design matrix X ).
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Goal: Minimize the reconstruction error between data X ∈ Rn×p and
the projected and reconstructed data XFH.

min
F∈Rp×k ,H∈Rk×p

∥X − XFH∥2
F

Defining XF =: W ∈ Rn×k , we write this as

min
W∈Rn×k ,H∈Rk×p

∥X − WH∥2
F .

This is the problem of matrix approximation. One solution is

XF = W = UkΣk ; H = V⊤
k ,

with Uk ∈ Rn×k ,Σk ∈ Rk×k ,V k ∈ Rp×k chosen as truncated singular
value decomposition of X .
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H = V⊤
k ∈ Rk×p is the reconstruction transformation matrix. The

projection matrix F = V k ∈ Rp×k fulfills XF = UkΣk :

XF = XV k = UΣV⊤V k = UΣ

(
Ik

0p−k

)
= U

(
Σk

0n−k

)
= UkΣk ,

The rows of XF = UkΣk ∈ Rn×k are the projected observations.

It can be shown (see next slide), that the rows of H = V⊤
k ∈ Rk×p

correspond to the k (pair-wise orthogonal) principal components.
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A more common motivation of PCA is the following: Linearly transform
the data to a new coordinate system such that the greatest variance in
the (transformed) data is along the first PC, the second greatest
variance is along a second PC orthogonal to the first PC, etc.

In this formulation, it can be shown that the k first principal
components correspond to the k eigenvectors with the greatest
eigenvalues of the covariance matrix X⊤X .

The eigenvalue decomposition X⊤X and the singular value
decomposition of X are related. Given the singular value
decomposition of X , we can derive the eingevalue decomposition
of X⊤X :

X⊤X = VΣU⊤UΣV⊤ = VΣ̂2V⊤

with Σ̂2 := Σ⊤Σ ∈ Rp×p having the squared singular values of X
on the diagonal.
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The right singular vectors V of X are equivalent to the
eigenvectors of X⊤X , and the singular values of X are equal to the
square-root of the eigenvalues of X⊤X . So we come up with the
same solution for both approaches.
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