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LOW-RANK APPROXIMATION

Let X be a m × n data matrix, where the columns of the matrix
represent different "objects" (images, text documents, ...). In many
practical applications X is high-dimensional.

Data Columns Rows m n
Image data Images Pixel intensities > 108 105 − 106

Text data Text documents Word frequencies 105 − 107 > 1010

Product reviews Products User reviews 101 − 104 > 107

Audio data(∗) Points in time Strength of a frequency 105 − 106 > 108

(∗) Example: https://musiclab.chromeexperiments.com/Spectrogram
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LOW-RANK APPROXIMATION / 2

In a low-rank approximation, X is factorized into two matrices
W ∈ Rm×k and H ∈ Rk×n such that

X ≈ W︸︷︷︸
"dictionary",
"patterns",

"topics"

· H︸︷︷︸
"regressors"

Compared to n and m, k is usually small.
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LOW-RANK APPROXIMATION / 3

Introductory Example 1: Image Processing(∗)

Given are n images in vectorized form.

X = W · H

(∗) Example from http://perso.telecom-paristech.fr/~essid/teach/NMF_

tutorial_ICME-2014.pdf
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(Possible) Advantages:

The dimension reduction reveals latent variables (here: "Facial
Features") and the data can be "explained".

The storage space can be reduced significantly (for appropriate
choice of k ). Instead of a m × n matrix, a m × k and a k × n
matrix with k ≪ m, n must be stored.

Calculation example: n = 1000 images with m = 10000 pixels each. Using a

matrix approximation of rank 10 the storage space can be reduced from

m × n = 1 × 106 to m × k + k × n = 10000 · 10 + 10 · 1000 = 110000 (about

10% of the original size).
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Introductory Example 2: Text mining

Given is a m × n document-term matrix X, where

xij = Frequency of term i in document j

Using a low-rank approximation, we approximate X with

X ≈ WH

Suppose we want to display various newspaper articles in a
document-term matrix.
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The k columns in W represent different topics, and the entries of W can
be interpreted as

wij = connection of word i and subject j
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The entries of H can be interpreted as

hij = Measure for how much article j discusses topic i
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For fixed k this can be formulated as a general optimization problem

min
W∈Rm×k ,H∈Rk×n

∥X − WH∥2
F

The Eckart-Young-Mirsky theorem states that the solution of the
optimization problem is given by the truncated singular value
decomposition

X ≈ WH = UkΣk V⊤
k

where matrix Σk contains the k largest singular values and the
matrices Uk , Vk contain the corresponding singular vectors of X.

The matrices W and H can be set as W := UkΣk and H := V⊤
k or as

W := Uk(Σk)
1/2 and H := (Σk)

1/2V⊤
k .
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