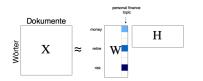
Algorithms and Data Structures

Matrix Approximation Low-Rank Approximation

× 0 0 × × ×



Learning goals

Low-Rank Approximation

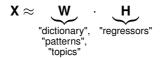
Let **X** be a $m \times n$ data matrix, where the columns of the matrix represent different "objects" (images, text documents, ...). In many practical applications **X** is high-dimensional.

Data	Columns	Rows	т	п
Image data	Images	Pixel intensities	> 10 ⁸	$10^5 - 10^6$
Text data	Text documents	Word frequencies	$10^5 - 10^7$	$> 10^{10}$
Product reviews	Products	User reviews	$10^{1} - 10^{4}$	> 10 ⁷
Audio data ^(*)	Points in time	Strength of a frequency	$10^{5} - 10^{6}$	> 10 ⁸

(*) Example: https://musiclab.chromeexperiments.com/Spectrogram

××

In a low-rank approximation, **X** is factorized into two matrices $\mathbf{W} \in \mathbb{R}^{m \times k}$ and $\mathbf{H} \in \mathbb{R}^{k \times n}$ such that

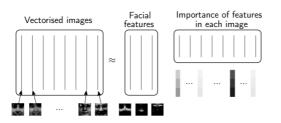


Compared to *n* and *m*, *k* is usually small.

Introductory Example 1: Image Processing^(*)

X

Given are *n* images in vectorized form.



W .

Н

× < 0 × × ×

(*) Example from http://perso.telecom-paristech.fr/~essid/teach/NMF_ tutorial_ICME-2014.pdf

(Possible) Advantages:

- The dimension reduction reveals **latent variables** (here: "Facial Features") and the data can be "explained".
- The storage space can be reduced significantly (for appropriate choice of k). Instead of a m × n matrix, a m × k and a k × n matrix with k ≪ m, n must be stored.

Calculation example: n = 1000 images with m = 10000 pixels each. Using a matrix approximation of rank 10 the storage space can be reduced from $m \times n = 1 \times 10^6$ to $m \times k + k \times n = 10000 \cdot 10 + 10 \cdot 1000 = 110000$ (about 10% of the original size).

× 0 0 × 0 × ×

Introductory Example 2: Text mining

Given is a $m \times n$ document-term matrix **X**, where

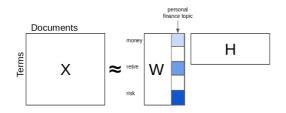
 x_{ij} = Frequency of term *i* in document *j*

Using a low-rank approximation, we approximate X with

$\mathbf{X}\approx\mathbf{W}\mathbf{H}$

Suppose we want to display various newspaper articles in a document-term matrix.

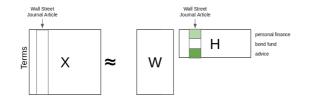
× 0 0 × 0 × ×



× 0 0 × 0 × ×

The k columns in **W** represent different topics, and the entries of **W** can be interpreted as

 w_{ij} = connection of word *i* and subject *j*



The entries of H can be interpreted as

 h_{ij} = Measure for how much article *j* discusses topic *i*

For fixed *k* this can be formulated as a general optimization problem

$$\min_{\mathbf{W}\in\mathbb{R}^{m\times k},\mathbf{H}\in\mathbb{R}^{k\times n}}\|\mathbf{X}-\mathbf{W}\mathbf{H}\|_{F}^{2}$$

The Eckart-Young-Mirsky theorem states that the solution of the optimization problem is given by the **truncated singular value decomposition**

$$\mathbf{X} pprox \mathbf{W} \mathbf{H} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{ op}$$

where matrix Σ_k contains the *k* largest **singular values** and the matrices **U**_{*k*}, **V**_{*k*} contain the corresponding **singular vectors** of **X**.

The matrices W and H can be set as $W := U_k \Sigma_k$ and $H := V_k^{\top}$ or as $W := U_k (\Sigma_k)^{1/2}$ and $H := (\Sigma_k)^{1/2} V_k^{\top}$.