Algorithms and Data Structures

Matrix Decomposition Overdetermined Systems & Regression Example

Learning goals

- Overdetermined systems
- Normal equations
- QR decomposition and ridge regression

OVERDETERMINED SYSTEMS

A system of linear equations $Ax = b$ with $A \in \mathbb{R}^{m \times n}$, $m \ge n$ with more equations than unknowns, is called **overdetermined**.

In general such a system has no (exact) solution.

A (compromise) solution using **least squares** is the vector *x* which minimizes the squared sum of the **residual vector** $r = b - Ax$:

$$
\bm{x} = \text{arg min} \, \|\bm{b} - \bm{A}\bm{x}\|_2^2
$$

 \overline{C}

EXAMPLE: THE REGRESSION MODEL

Aim: Solve $X\beta = v$ with

- **X**: $n \times (p + 1)$, Design matrix
- **v**: $n \times 1$, *n* observations
- θ : $(p+1) \times 1$, *p* regressors plus intercept

Since the linear system is usually overdetermined (more observations than variables) and has no solution, we minimize the residual sum of squares:

$$
\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|_2^2 = (\mathbf{y} - \mathbf{X}\beta)^{\top}(\mathbf{y} - \mathbf{X}\beta)
$$

Questions: How can the problem be solved in a numerically stable way? Which algorithms are fast?

 \times \times

CONDITION OF NORMAL EQUATIONS

The solution of the optimization problem is (mathematically) equivalent to the solution of the **normal equation**

$$
\mathbf{X}^\top \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^\top \mathbf{y}
$$

 \times \times

(Derivation: differentiate with respect to β and set to 0). If the matrix **X** has full column rank, then the matrix **X** [⊤]**X** is symmetric positive-definite and the following holds

$$
\kappa(\mathbf{X}^T\mathbf{X}) = \kappa(\mathbf{X})^2
$$

using the spectral norm.

Consequently, the error amplification is $\kappa(X)^2$ when using normal equations.

CONDITION OF NORMAL EQUATIONS / 2

Note:

- Mathematically speaking, the solution of the normal equations is equivalent to the minimization of the residual sum of squares
- However, from a numerical point of view a distinction must be made between the two of them
- A solution using the normal equations requires the calculation of **X** [⊤]**X**, an error in **X** is therefore amplified
- Better: Find an efficient method that operates directly on **X**

 $\overline{\mathbf{X}}$

Model **y** = $\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

Normal equations: **X** [⊤]**X**β = **X** [⊤]**y**

If **X** is of full rank then **X** [⊤]**X** is positive-definite and the Cholesky decomposition applicable.

- **¹** Calculate **X** [⊤]**X** and **X** [⊤]**y**,
- **²** Cholesky decomposition **X** [⊤]**X** = **LL**⊤,
- **³** Solve **Lw** = **X** [⊤]**y** for **w**,
- **⁴** Calculate *RSS* = **y** [⊤]**y** − **w** [⊤]**w**,
- \mathbf{B} Solve $\mathsf{L}^\top \boldsymbol{\beta} = \mathsf{w}$ for $\boldsymbol{\beta} = \hat{\boldsymbol{\beta}},$
- **⁶** (**X** [⊤]**X**) [−]¹ = **L** −⊤**L** −1 .

 $\overline{}$

```
X = matrix(c(rep(1, 6), c(1.01, 1.01)), ncol = 2)X
## [,1] [,2]
## [1,] 1 1.00
## [2,] 1 1.00
## [3,] 1 1.01
## [4,] 1 1.01
XX = t(X) %*% X
XX
## [,1] [,2]
## [1,] 4.00 4.020000000000000
## [2,] 4.02 4.040200000000000
```
 X \times \times

 $XX2 = round(XX, 3)$ XX2 $\#$ [.1] [.2] ## [1,] 4.00 4.02 ## [2,] 4.02 4.04

cholesky(XX) ## [,1] [,2] ## [1,] 2.00 0.00000000000000000 ## [2,] 2.01 0.01000000000007716

cholesky(XX2) $\#$ [.1] [.2] ## [1,] 2.00 0 ## [2,] 2.01 NaN

 \Rightarrow Number of decimal digits matters, matrix no longer positive-definite!

X XX

In general a solution using normal equations is to be avoided

$$
\bm{X}^\top\bm{X}\bm{\beta}=\bm{X}^\top\bm{y}
$$

since:

- **High computational effort**: First calculation of *X* [⊤]*X*, then matrix decomposition of *X* [⊤]*X*, then forward and back substitution
- **Numeric instability**: In all these individual steps there is a risk that errors will be amplified.

A further problem occurs if we want to solve the normal equations in case of **collinearity** in the design matrix **X**. The reason for this is the singularity of the product of **X** [⊤]**X** which results from collinearity.

It is often more suitable to operate directly on **X** by using QR decomposition $X = QR$:

$$
\mathbf{X}^{\top}\mathbf{X} = (\mathbf{Q}\mathbf{R})^{\top}(\mathbf{Q}\mathbf{R}) = \mathbf{R}^{\top}\mathbf{Q}^{\top}\mathbf{Q}\mathbf{R} = \mathbf{R}^{\top}\mathbf{R}
$$

The normal equations can then be written as

 $\mathsf{R}^\top \mathsf{R} \beta = \mathsf{R}^\top \mathsf{Q} \top \mathsf{y}$

and since ${\sf R}^{\top}$ is nonsingular it follows

$$
\mathbf{R}\boldsymbol{\beta}=\mathbf{Q}^{\top}\mathbf{y}
$$

Since **R** is an upper triangular matrix, the equation system (after multiplying $\bm{Q}^{\top}\bm{y}$) can be solved using back substitution in $\mathcal{O}(n^2)$.

The steps to solve a linear regression problem using QR decomposition are therefore as follows:

- **1** Calculate the QR decomposition $X = QR$,
- **²** Calculate *z* = *Q* [⊤]*y*,
- **3** Solve the equation system $\mathbf{R}\beta = \mathbf{z}$ using back substitution.

 \times \times

Advantage of QR decomposition: As already stated, the solution when using QR decomposition can be written as

$$
\mathbf{R}\boldsymbol{\beta} = \mathbf{Q}^{\top}\mathbf{y}
$$

- **X** (and not *X* [⊤]*X*) is decomposed directly.
- **X** [⊤]**X** does not have to be calculated (thus avoiding numerical instability from collinearity).
- If a stable algorithm is used to calculate the QR decomposition (e.g. Householder), the method is stable.
- Extreme runtime advantages if a regression is to be performed for constant design matrix *X*, but different *y*.

Note: For linear models $lm()$ in R the QR decomposition is applied when calculating β .

 \times \times

QR DECOMPOSITION AND RIDGE REGRESSION

In order to avoid a high variance, large parameters are often penalized by a penalty term. We minimize a penalized version of the residual sum of squares

$$
\min_{\boldsymbol{\beta}} \|\textbf{y}-\textbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2
$$

with regularization parameter $\lambda > 0$. If the L_2 norm is selected for the penalty, the procedure is known as **ridge regression**.

We obtain a general version of the normal equations by setting the first derivative to 0

$$
\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)\boldsymbol{\beta}=\mathbf{X}^{\top} \mathbf{y}
$$

$$
\begin{array}{c}\n\times 0 \\
\times 0 \\
\hline\n\end{array}
$$

QR DECOMPOSITION AND RIDGE REGRESSION /2

With *Aoneqq* √ *X* $\left(\frac{\mathbf{X}}{\lambda I}\right) \in \mathbb{R}^{n+p,p}$ the normal equations for ridge regression can be rewritten as

$$
\begin{array}{rcl}\n\left(\mathbf{X}^{\top} \mathbf{X}+\lambda I\right) \boldsymbol{\beta} &=& \mathbf{X}^{\top} \mathbf{y} \\
\mathbf{A}^{\top} \mathbf{A} \boldsymbol{\beta} &=& \mathbf{A}^{\top} \begin{pmatrix} \mathbf{y} \\ \mathbf{0} \end{pmatrix}\n\end{array}
$$

X X

We use the QR decomposition of $\mathbf{A} = \mathbf{Q}_{\lambda} \mathbf{R}_{\lambda}$ depending on λ :

$$
A^{\top} A \beta = A^{\top} \begin{pmatrix} y \\ 0 \end{pmatrix}
$$

$$
R_{\lambda}^{\top} Q_{\lambda}^{\top} Q_{\lambda} R_{\lambda} \beta = R_{\lambda}^{\top} Q_{\lambda}^{\top} \begin{pmatrix} y \\ 0 \end{pmatrix}
$$

$$
R_{\lambda}^{\top} R_{\lambda} \beta = R_{\lambda}^{\top} Q_{\lambda}^{\top} \begin{pmatrix} y \\ 0 \end{pmatrix}
$$

QR DECOMPOSITION AND RIDGE REGRESSION / 3

- \bullet If \mathbf{R}_{λ} is singular, we have to solve two LES in echelon form
- \bullet If \mathbf{R}_{λ} is nonsingular and thus invertible, the equation simplifies to one linear system in echelon form

The regularization parameter λ is a hyperparameter that must be selected by the user. Often the linear system has to be solved several times for different λ to find a sensible degree of regularization.

In such situations the QR decomposition

$$
\mathbf{R}_{\lambda}^{\top} \mathbf{R}_{\lambda} \boldsymbol{\beta} = \mathbf{R}_{\lambda}^{\top} \mathbf{Q}_{\lambda}^{\top} \begin{pmatrix} \mathbf{y} \\ \mathbf{0} \end{pmatrix}
$$

has to be calculated anew for each λ . The QR decomposition of the matrix \boldsymbol{A} is calculated in $\mathcal{O}(n^3)$. Forward and back substitution are operations of $\mathcal{O}(n^2)$, so in total the runtime is given by $\mathcal{O}(n^3)$.

COMPARISON OF METHODS FOR REGRESSION

⇒ **Note:** QR decomposition is not the fastest method regarding runtime, but it is always numerically stable in a regression context.

COMPARISON OF METHODS FOR REGRESSION / 2

X **XX**