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OVERDETERMINED SYSTEMS

A system of linear equations Ax = b with A ∈ Rm×n,m ≥ n with more
equations than unknowns, is called overdetermined.

In general such a system has no (exact) solution.

A (compromise) solution using least squares is the vector x which
minimizes the squared sum of the residual vector r = b − Ax :

x = argmin ∥b − Ax∥2
2
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EXAMPLE: THE REGRESSION MODEL

Aim: Solve Xβ = y with

X: n × (p + 1), Design matrix

y: n × 1, n observations

β: (p + 1)× 1, p regressors plus intercept

Since the linear system is usually overdetermined (more observations
than variables) and has no solution, we minimize the residual sum of
squares:

min
β

∥y − Xβ∥2
2 = (y − Xβ)⊤(y − Xβ)

Questions: How can the problem be solved in a numerically stable
way? Which algorithms are fast?
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CONDITION OF NORMAL EQUATIONS

The solution of the optimization problem is (mathematically) equivalent
to the solution of the normal equation

X⊤Xβ = X⊤y

(Derivation: differentiate with respect to β and set to 0).
If the matrix X has full column rank, then the matrix X⊤X is symmetric
positive-definite and the following holds

κ(XT X) = κ(X)2

using the spectral norm.

Consequently, the error amplification is κ(X)2 when using normal
equations.
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CONDITION OF NORMAL EQUATIONS / 2

Note:

Mathematically speaking, the solution of the normal equations is
equivalent to the minimization of the residual sum of squares

However, from a numerical point of view a distinction must be
made between the two of them

A solution using the normal equations requires the calculation of
X⊤X, an error in X is therefore amplified

Better: Find an efficient method that operates directly on X
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SOLUTION OF THE NORMAL EQUATIONS

Model y = Xβ + ε

Normal equations: X⊤Xβ = X⊤y

If X is of full rank then X⊤X is positive-definite and the Cholesky
decomposition applicable.

1 Calculate X⊤X and X⊤y,
2 Cholesky decomposition X⊤X = LL⊤,
3 Solve Lw = X⊤y for w,
4 Calculate RSS = y⊤y − w⊤w,
5 Solve L⊤β = w for β = β̂,
6 (X⊤X)−1 = L−⊤L−1.
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SOLUTION OF THE NORMAL EQUATIONS / 2

X = matrix(c(rep(1, 6), c(1.01, 1.01)), ncol = 2)

X

## [,1] [,2]

## [1,] 1 1.00

## [2,] 1 1.00

## [3,] 1 1.01

## [4,] 1 1.01

XX = t(X) %*% X

XX

## [,1] [,2]

## [1,] 4.00 4.020000000000000

## [2,] 4.02 4.040200000000000
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SOLUTION OF THE NORMAL EQUATIONS / 3

XX2 = round(XX, 3)

XX2

## [,1] [,2]

## [1,] 4.00 4.02

## [2,] 4.02 4.04

cholesky(XX)

## [,1] [,2]

## [1,] 2.00 0.00000000000000000

## [2,] 2.01 0.01000000000007716

cholesky(XX2)

## [,1] [,2]

## [1,] 2.00 0

## [2,] 2.01 NaN

⇒ Number of decimal digits matters, matrix no longer positive-definite!
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SOLUTION OF THE NORMAL EQUATIONS / 4

In general a solution using normal equations is to be avoided

X⊤Xβ = X⊤y

since:

High computational effort: First calculation of X⊤X , then matrix
decomposition of X⊤X , then forward and back substitution

Numeric instability: In all these individual steps there is a risk
that errors will be amplified.

A further problem occurs if we want to solve the normal equations
in case of collinearity in the design matrix X. The reason for this is
the singularity of the product of X⊤X which results from collinearity.
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SOLUTION OF THE NORMAL EQUATIONS / 5

It is often more suitable to operate directly on X by using QR
decomposition X = QR:

X⊤X = (QR)⊤(QR) = R⊤Q⊤QR = R⊤R

The normal equations can then be written as

R⊤Rβ = R⊤Q⊤y

and since R⊤ is nonsingular it follows

Rβ = Q⊤y

Since R is an upper triangular matrix, the equation system (after
multiplying Q⊤y) can be solved using back substitution in O(n2).
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SOLUTION OF THE NORMAL EQUATIONS / 6

The steps to solve a linear regression problem using QR decomposition
are therefore as follows:

1 Calculate the QR decomposition X = QR,
2 Calculate z = Q⊤y ,
3 Solve the equation system Rβ = z using back substitution.
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SOLUTION OF THE NORMAL EQUATIONS / 7

Advantage of QR decomposition: As already stated, the solution
when using QR decomposition can be written as

Rβ = Q⊤y

X (and not X⊤X ) is decomposed directly.

X⊤X does not have to be calculated (thus avoiding numerical
instability from collinearity).

If a stable algorithm is used to calculate the QR decomposition
(e.g. Householder), the method is stable.

Extreme runtime advantages if a regression is to be performed for
constant design matrix X , but different y .

Note: For linear models lm() in R the QR decomposition is applied
when calculating β.

© Algorithms and Data Structures – 11 / 16



QR DECOMPOSITION AND RIDGE REGRESSION

In order to avoid a high variance, large parameters are often penalized
by a penalty term. We minimize a penalized version of the residual sum
of squares

min
β

∥y − Xβ∥2
2 + λ∥β∥2

2

with regularization parameter λ > 0. If the L2 norm is selected for the
penalty, the procedure is known as ridge regression.

We obtain a general version of the normal equations by setting the first
derivative to 0 (

X⊤X + λI
)
β = X⊤y
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QR DECOMPOSITION AND RIDGE REGRESSION / 2

With Aoneqq
( X√

λI

)
∈ Rn+p,p the normal equations for ridge regression

can be rewritten as (
X⊤X + λI

)
β = X⊤y

A⊤Aβ = A⊤
(

y
0

)
We use the QR decomposition of A = QλRλ depending on λ:

A⊤Aβ = A⊤
(

y
0

)
R⊤
λ Q⊤

λ QλRλβ = R⊤
λ Q⊤

λ

(
y
0

)
R⊤
λ Rλβ = R⊤

λ Q⊤
λ

(
y
0

)
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QR DECOMPOSITION AND RIDGE REGRESSION / 3

If Rλ is singular, we have to solve two LES in echelon form

If Rλ is nonsingular and thus invertible, the equation simplifies to
one linear system in echelon form

The regularization parameter λ is a hyperparameter that must be
selected by the user. Often the linear system has to be solved several
times for different λ to find a sensible degree of regularization.

In such situations the QR decomposition

R⊤
λ Rλβ = R⊤

λ Q⊤
λ

(
y
0

)
has to be calculated anew for each λ. The QR decomposition of the
matrix A is calculated in O(n3). Forward and back substitution are
operations of O(n2), so in total the runtime is given by O(n3).
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COMPARISON OF METHODS FOR REGRESSION

Method Runtime General Numerical Stability Stability in Collinearity
Naive approach - - no no

LU + + yes, with pivotisation no
QR (Householder) - yes yes

⇒ Note: QR decomposition is not the fastest method regarding
runtime, but it is always numerically stable in a regression context.
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COMPARISON OF METHODS FOR REGRESSION / 2
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