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QR DECOMPOSITION

Given A ∈ Rn×n. We decompose A into the product of an orthogonal
matrix Q ∈ Rn×n and an upper triangular matrix R ∈ Rn×n

A = QR with Q⊤Q = I,

The columns of the matrix Q = (q1, . . . ,qn) form an orthonormal basis
for the column space of the matrix A and

R =


⟨q1, a1⟩ ⟨q1, a2⟩ ⟨q1, a3⟩ · · ·

0 ⟨q2, a2⟩ ⟨q2, a3⟩ · · ·
0 0 ⟨q3, a3⟩ · · ·
...

...
...

. . .


The orthonormal basis for A is calculated by the Gram-Schmidt
process.
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GRAM-SCHMIDT PROCESS

The process takes a finite, linearly independent set of vectors and
generates an orthogonal set of vectors that form an orthonormal
basis.(∗)

Procedure: Projection: projqa = ⟨q,a⟩
⟨q,q⟩q.

u1 = a1 q1 =
u1

∥u1∥

u2 = a2 − proju1
a2 q2 =

u2

∥u2∥
... =

...
... =

...

uk = ak −
k−1∑
j=1

projuj
ak qk =

uk

∥uk∥

The vectors constructed in this way actually form an orthonormal basis
of the column space of A (can be shown).

(∗) If the vector ai is not independent of a1, ..., ai−1, then u i = 0.
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GRAM-SCHMIDT PROCESS / 2

A can now be represented by the calculated orthonormal basis:

a1 = q1⟨q1, a1⟩
a2 = q1⟨q1, a2⟩+ q2⟨q2, a2⟩

... =
...

ak =
k∑

j=1

q j⟨q j , ak⟩

Or in matrix notation:

QR = (q1⟨q1, a1⟩,q1⟨q1, a2⟩+ q2⟨q2, a2⟩, · · · ) = A
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GRAM-SCHMIDT VISUALIZED
Given: Three independent vectors a1, a2, a3
Aim: Vectors of an orthonormal basis q1, q2, q3

1 a1 serves as the first vector of the orthogonal basis (u1).

2 a2 is projected onto u1; projection is substracted from a2 to obtain u2.
3 a3 is projected onto u1 and u2, to obtain u3.

4 u1, u2 and u3 are normalized.

https://commons.wikimedia.org/wiki/File:Gram-Schmidt_orthonormalization_process.gif
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QR DECOMPOSITION: EXAMPLE

Calculation of A = QR with A given by

A =

0 −20 −14
3 27 −4
4 11 −2


k = 1:

u1 =a1 =

0
3
4


q1 =

u1

∥u1∥
=

u1√
0 + 9 + 16

=
1
5

0
3
4


r11 = ⟨q1, a1⟩ =

1
5
(02 + 32 + 42) = 5

r12 = ⟨q1, a2⟩ =
1
5
(0 · (−20) + 3 · 27 + 4 · 11) = 25

r13 = ⟨q1, a3⟩ =
1
5
(0 · (−14) + 3 · (−4) + 4 · (−2)) = −4
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QR DECOMPOSITION: EXAMPLE / 2

k = 2:

u2 =a2 −
⟨u1, a2⟩
⟨u1, u1⟩

u1

=a2 −
125
25

0
3
4


=

−20
12
−9


q2 =

u2

∥u2∥
=

u2√
400 + 144 + 81

=
1
25

−20
12
−9


r22 = ⟨q2, a2⟩ =

1
25

((−20) · (−20) + 12 · 27 + (−9) · 11) = 25

r23 = ⟨q2, a3⟩ =
1
25

((−20) · (−14) + 12 · (−4) + (−9) · (−2)) = 10
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QR DECOMPOSITION: EXAMPLE / 3

k = 3:

u3 =a3 −
⟨u1, a3⟩
⟨u1, u1⟩

u1 −
⟨u2, a3⟩
⟨u2, u2⟩

u2

=a3 −
−20
25

0
3
4

− 250
625

−20
12
−9


=

 −6
−6.4
4.8


q3 =

u3

∥u3∥
=

1
25

−15
−16
12


r33 = ⟨q3, a3⟩ =

1
25

((−15) · (−14) + (−16) · (−4) + 12 · (−2)) = 10
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QR DECOMPOSITION: EXAMPLE / 4

This results in

Q =
1
25

 0 −20 −15
15 12 −16
20 −9 12

 and R =

5 25 −4
0 25 10
0 0 10

 .
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HOUSEHOLDER AND GIVENS MATRIX
Problem in practice:
Q often not really orthogonal when using the above algorithm due to
numerical reasons.

Two other methods for QR decomposition

Householder matrix:

For vector u, matrix U = I − duu⊤ is orthogonal, if d = 2/u⊤u.
Choose u = x + se1 with s = x⊤x ⇒ Ux = −se1.

Successive elimination of column elements yields QR decomposition.

Givens matrix:

Similar to Householder, but orthogonal transformations that eliminate
an element of a column vector each, and change a second vector.

For details see Carl D. Meyer Matrix Analysis and Applied Linear Algebra.
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PROPERTIES OF QR DECOMPOSITION

Splitting a matrix into an orthogonal matrix Q and R

Gram-Schmidt process is numerically unstable, but can be
extended and numerically stabilized

Existence: Decomposition exists for each n × n matrix and can be
extended to general m × n,m ̸= n matrices

Runtime behavior: Numerical stable solution of Householder
transformation or Givens rotation comes along with higher effort:

Decomposition of n × n matrix using Householder
transformation: ≈ 2

3n3 multiplications
Forward and back substitution: n2
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COMPARISON OF METHODS

Procedure A # Multiplications Stability
LU regular ≈ 1

3n3 yes, by pivoting
Cholesky p.d. ≈ 1

6n3 yes
QR (Gram Schmidt) - ≈ 2n3 no
QR (Householder) - ≈ 2

3n3 yes
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QR DECOMPOSITION FOR M × N MATRICES

General m × n,m ≥ n matrices can be decomposed as well when
using QR decomposition.

A = QR = Q
[

R1

0

]
=

[
Q1 Q2

] [R1

0

]
= Q1R1

Q1 ∈ Rm×n,Q2 ∈ Rm×(m−n) with orthogonal columns, and R ∈ Rn×n

upper triangular matrix.

Q1 × R1 is known as a reduced QR decomposition.
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