Algorithms and Data Structures

Matrix Decomposition QR Decomposition

Learning goals

- QR decomposition
- Gram-Schmidt Pprocess

QR DECOMPOSITION

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$. We decompose \mathbf{A} into the product of an orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$

 $\mathbf{A} = \mathbf{Q}\mathbf{R}$ with $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$,

The columns of the matrix $\boldsymbol{Q} = (\boldsymbol{q}_1, \dots, \boldsymbol{q}_n)$ form an orthonormal basis for the column space of the matrix **A** and

$$\boldsymbol{R} = \begin{pmatrix} \langle \boldsymbol{q}_1, \boldsymbol{a}_1 \rangle & \langle \boldsymbol{q}_1, \boldsymbol{a}_2 \rangle & \langle \boldsymbol{q}_1, \boldsymbol{a}_3 \rangle & \cdots \\ 0 & \langle \boldsymbol{q}_2, \boldsymbol{a}_2 \rangle & \langle \boldsymbol{q}_2, \boldsymbol{a}_3 \rangle & \cdots \\ 0 & 0 & \langle \boldsymbol{q}_3, \boldsymbol{a}_3 \rangle & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

The orthonormal basis for **A** is calculated by the Gram-Schmidt process.

GRAM-SCHMIDT PROCESS

The process takes a finite, linearly independent set of vectors and generates an orthogonal set of vectors that form an orthonormal basis. (*)

Procedure: Projection: $\operatorname{proj}_{q} a = \frac{\langle q, a \rangle}{\langle q, q \rangle} q$.

$$u_{1} = a_{1} \qquad q_{1} = \frac{u_{1}}{\|u_{1}\|}$$

$$u_{2} = a_{2} - \operatorname{proj}_{u_{1}} a_{2} \qquad q_{2} = \frac{u_{2}}{\|u_{2}\|}$$

$$\vdots = \vdots \qquad \vdots = \vdots$$

$$u_{k} = a_{k} - \sum_{j=1}^{k-1} \operatorname{proj}_{u_{j}} a_{k} \qquad q_{k} = \frac{u_{k}}{\|u_{k}\|}$$

× × 0 × × ×

The vectors constructed in this way actually form an orthonormal basis of the column space of A (can be shown).

^(*) If the vector \boldsymbol{a}_i is not independent of $\boldsymbol{a}_1, ..., \boldsymbol{a}_{i-1}$, then $\boldsymbol{u}_i = \boldsymbol{0}$.

GRAM-SCHMIDT PROCESS / 2

A can now be represented by the calculated orthonormal basis:

$$a_{1} = q_{1} \langle q_{1}, a_{1} \rangle$$

$$a_{2} = q_{1} \langle q_{1}, a_{2} \rangle + q_{2} \langle q_{2}, a_{2} \rangle$$

$$\vdots = \vdots$$

$$a_{k} = \sum_{j=1}^{k} q_{j} \langle q_{j}, a_{k} \rangle$$

× × ×

Or in matrix notation:

$$oldsymbol{QR} = (oldsymbol{q}_1 \langle oldsymbol{q}_1, oldsymbol{a}_1 \rangle, oldsymbol{q}_1 \langle oldsymbol{q}_1, oldsymbol{a}_2
angle + oldsymbol{q}_2 \langle oldsymbol{q}_2, oldsymbol{a}_2
angle, \cdots) = oldsymbol{A}$$

Given: Three independent vectors a_1 , a_2 , a_3 **Aim:** Vectors of an orthonormal basis q_1 , q_2 , q_3

- **1** a₁ serves as the first vector of the orthogonal basis (u_1) .
 - a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2 .
 - a_3 is projected onto u_1 and u_2 , to obtain u_3 .

https://commons.wikimedia.org/wiki/File:Gram-Schmidt_orthonormalization_process.gif

Algorithms and Data Structures - 4 / 19

хx

× × ×

Given: Three independent vectors a_1 , a_2 , a_3 **Aim:** Vectors of an orthonormal basis q_1 , q_2 , q_3

- 1 a₁ serves as the first vector of the orthogonal basis (u_1).
- 2 a₂ is projected onto u₁; projection is substracted from a₂ to obtain u₂.
- 3 a_3 is projected onto u_1 and u_2 , to obtain u_3 .
- $(u_1, u_2 \text{ and } u_3 \text{ are normalized.})$

Given: Three independent vectors a_1 , a_2 , a_3 **Aim:** Vectors of an orthonormal basis q_1 , q_2 , q_3

- \bigcirc a_1 serves as the first vector of the orthogonal basis (u_1) .
- 2) a₂ is projected onto u₁; projection is substracted from a₂ to obtain u₂.
- 3 a_3 is projected onto u_1 and u_2 , to obtain u_3 .
- u_1 , u_2 and u_3 are normalized.

Given: Three independent vectors a_1 , a_2 , a_3 **Aim:** Vectors of an orthonormal basis q_1 , q_2 , q_3

- 1 a₁ serves as the first vector of the orthogonal basis (u_1).
- 2) a₂ is projected onto u₁; projection is substracted from a₂ to obtain u₂.
- 3 a_3 is projected onto u_1 and u_2 , to obtain u_3 .
- (4) u_1 , u_2 and u_3 are normalized.

Given: Three independent vectors a_1 , a_2 , a_3 **Aim:** Vectors of an orthonormal basis q_1 , q_2 , q_3

- **1** a_1 serves as the first vector of the orthogonal basis (u_1).
- 2) a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2 .
- 3 a_3 is projected onto u_1 and u_2 , to obtain u_3 .
- $(u_1, u_2 \text{ and } u_3 \text{ are normalized.})$

× 0 0 × 0 × ×

Given: Three independent vectors a_1 , a_2 , a_3 **Aim:** Vectors of an orthonormal basis q_1 , q_2 , q_3

- 1 a₁ serves as the first vector of the orthogonal basis (u_1)
- 2) a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2 .
- 3 a_3 is projected onto u_1 and u_2 , to obtain u_3 .
- u_1 , u_2 and u_3 are normalized.

https://commons.wikimedia.org/wiki/File:Gram-Schmidt_orthonormalization_process.gif

Algorithms and Data Structures - 10 / 19

×х

Given: Three independent vectors a_1 , a_2 , a_3 **Aim:** Vectors of an orthonormal basis q_1 , q_2 , q_3

- a₁ serves as the first vector of the orthogonal basis (u₁
- 2) a₂ is projected onto u₁; projection is substracted from a₂ to obtain u₂.
- 3) a_3 is projected onto u_1 and u_2 , to obtain u_3 .
- $(u_1, u_2 \text{ and } u_3 \text{ are normalized.})$

QR DECOMPOSITION: EXAMPLE

Calculation of A = QR with A given by

$$\mathbf{A} = \begin{pmatrix} 0 & -20 & -14 \\ 3 & 27 & -4 \\ 4 & 11 & -2 \end{pmatrix}$$

= 1:
$$\mathbf{u}_1 = \mathbf{a}_1 = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$$

$$\mathbf{q}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = \frac{\mathbf{u}_1}{\sqrt{0+9+16}} = \frac{1}{5} \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$$

$$r_{11} = \langle \mathbf{q}_1, \mathbf{a}_1 \rangle = \frac{1}{5} (0^2 + 3^2 + 4^2) = 5$$

$$r_{12} = \langle \mathbf{q}_1, \mathbf{a}_2 \rangle = \frac{1}{5} (0 \cdot (-20) + 3 \cdot 27 + 4 \cdot 11) = 25$$

$$r_{13} = \langle \mathbf{q}_1, \mathbf{a}_3 \rangle = \frac{1}{5} (0 \cdot (-14) + 3 \cdot (-4) + 4 \cdot (-2)) = -4$$

× × ×

k

QR DECOMPOSITION: EXAMPLE / 2

k = 2:

$$u_{2} = a_{2} - \frac{\langle u_{1}, a_{2} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1}$$
$$= a_{2} - \frac{125}{25} \begin{pmatrix} 0\\ 3\\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} -20\\ 12\\ -9 \end{pmatrix}$$

$$\boldsymbol{q}_{2} = \frac{\boldsymbol{u}_{2}}{\|\|\boldsymbol{u}_{2}\|\|} = \frac{\boldsymbol{u}_{2}}{\sqrt{400 + 144 + 81}} = \frac{1}{25} \begin{pmatrix} -20\\ 12\\ -9 \end{pmatrix}$$
$$\boldsymbol{r}_{22} = \langle \boldsymbol{q}_{2}, \boldsymbol{a}_{2} \rangle = \frac{1}{25} ((-20) \cdot (-20) + 12 \cdot 27 + (-9) \cdot 11) = 25$$
$$\boldsymbol{r}_{23} = \langle \boldsymbol{q}_{2}, \boldsymbol{a}_{3} \rangle = \frac{1}{25} ((-20) \cdot (-14) + 12 \cdot (-4) + (-9) \cdot (-2)) = 10$$

× 0 0 × 0 × ×

QR DECOMPOSITION: EXAMPLE / 3

k = 3:

$$u_{3} = a_{3} - \frac{\langle u_{1}, a_{3} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \frac{\langle u_{2}, a_{3} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2}$$

$$= a_{3} - \frac{-20}{25} \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} - \frac{250}{625} \begin{pmatrix} -20 \\ 12 \\ -9 \end{pmatrix}$$

$$= \begin{pmatrix} -6 \\ -6.4 \\ 4.8 \end{pmatrix}$$

$$q_{3} = \frac{u_{3}}{||u_{3}||} = \frac{1}{25} \begin{pmatrix} -15 \\ -16 \\ 12 \end{pmatrix}$$

$$r_{33} = \langle q_{3}, a_{3} \rangle = \frac{1}{25} ((-15) \cdot (-14) + (-16) \cdot (-4) + 12 \cdot (-2)) = 10$$

× × 0 × × ×

QR DECOMPOSITION: EXAMPLE / 4

This results in

$$\mathbf{Q} = rac{1}{25} egin{pmatrix} 0 & -20 & -15 \ 15 & 12 & -16 \ 20 & -9 & 12 \end{pmatrix}$$
 and $\mathbf{R} = egin{pmatrix} 5 & 25 & -4 \ 0 & 25 & 10 \ 0 & 0 & 10 \end{pmatrix}$.

HOUSEHOLDER AND GIVENS MATRIX

Problem in practice:

Q often not really orthogonal when using the above algorithm due to numerical reasons.

Two other methods for QR decomposition

Householder matrix:

For vector **u**, matrix $\mathbf{U} = \mathbf{I} - d\mathbf{u}\mathbf{u}^{\top}$ is orthogonal, if $d = 2/\mathbf{u}^{\top}\mathbf{u}$. Choose $\mathbf{u} = \mathbf{x} + s\mathbf{e}_1$ with $s = \mathbf{x}^{\top}\mathbf{x} \Rightarrow \mathbf{U}\mathbf{x} = -s\mathbf{e}_1$.

Successive elimination of column elements yields QR decomposition.

Givens matrix:

Similar to Householder, but orthogonal transformations that eliminate an element of a column vector each, and change a second vector.

For details see Carl D. Meyer Matrix Analysis and Applied Linear Algebra.

× 0 0 × 0 × × ×

PROPERTIES OF QR DECOMPOSITION

- Splitting a matrix into an orthogonal matrix **Q** and **R**
- Gram-Schmidt process is numerically unstable, but can be extended and numerically stabilized
- Existence: Decomposition exists for each *n* × *n* matrix and can be extended to general *m* × *n*, *m* ≠ *n* matrices
- Runtime behavior: Numerical stable solution of Householder transformation or Givens rotation comes along with higher effort:
 - Decomposition of $n \times n$ matrix using Householder transformation: $\approx \frac{2}{3}n^3$ multiplications
 - Forward and back substitution: n^2

× × ×

COMPARISON OF METHODS

Procedure	A	# Multiplications	Stability
LU	regular	$pprox rac{1}{3}n^3$	yes, by pivoting
Cholesky	p.d.	$pprox rac{1}{6}n^3$	yes
QR (Gram Schmidt)	-	$pprox 2n^3$	no
QR (Householder)	-	$pprox rac{2}{3}n^3$	yes

QR DECOMPOSITION FOR $M \times N$ **MATRICES**

General $m \times n$, $m \ge n$ matrices can be decomposed as well when using QR decomposition.

$$\mathbf{A} = \mathbf{Q}\mathbf{R} = \mathbf{Q}\begin{bmatrix}\mathbf{R}_1\\\mathbf{0}\end{bmatrix} = \begin{bmatrix}\mathbf{Q}_1 & \mathbf{Q}_2\end{bmatrix}\begin{bmatrix}\mathbf{R}_1\\\mathbf{0}\end{bmatrix} = \mathbf{Q}_1\mathbf{R}_1$$

 $Q_1 \in \mathbb{R}^{m \times n}$, $Q_2 \in \mathbb{R}^{m \times (m-n)}$ with orthogonal columns, and $R \in \mathbb{R}^{n \times n}$ upper triangular matrix.

 $\boldsymbol{Q}_1 \times \boldsymbol{R}_1$ is known as a **reduced** QR decomposition.

× 0 0 × 0 × × ×